Expression of both P1 and P2 purine receptor genes by human articular chondrocytes and profile of ligand-mediated prostaglandin E2 release. (1/1179)

OBJECTIVE: To assess the expression and function of purine receptors in articular chondrocytes. METHODS: Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to screen human chondrocyte RNA for expression of P1 and P2 purine receptor subtypes. Purine-stimulated prostaglandin E2 (PGE2) release from chondrocytes, untreated or treated with recombinant human interleukin-1alpha (rHuIL-1alpha), was assessed by radioimmunoassay. RESULTS: RT-PCR demonstrated that human articular chondrocytes transcribe messenger RNA for the P1 receptor subtypes A2a and A2b and the P2 receptor subtype P2Y2, but not for the P1 receptor subtypes A1 and A3. The P1 receptor agonists adenosine and 5'-N-ethylcarboxamidoadenosine did not change PGE2 release from chondrocytes. The P2Y2 agonists ATP and UTP stimulated a small release of PGE2 that was potentiated after pretreatment with rHuIL-1alpha. PGE2 release in response to ATP and UTP cotreatment was not additive, but release in response to coaddition of ATP and bradykinin (BK) or UTP and BK was additive, consistent with ATP and UTP competition for the same receptor site. The potentiation of PGE2 release in response to ATP and UTP after rHuIL-1alpha pretreatment was mimicked by phorbol myristate acetate. CONCLUSION: Human chondrocytes express both P1 and P2 purine receptor subtypes. The function of the P1 receptor subtype is not yet known, but stimulation of the P2Y2 receptor increases IL-1-mediated PGE2 release.  (+info)

A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. cross-talk between cyclic AMP and protein kinase c pathways. (2/1179)

Mitogen-activated protein kinase (MAPK) cascades underlie long-term mitogenic, morphogenic, and secretory activities of purinergic receptors. In HEK-293 cells, N-ethylcarboxamidoadenosine (NECA) activates endogenous A2BARs that signal through Gs and Gq/11. UTP activates P2Y2 receptors and signals only through Gq/11. The MAPK isoforms, extracellular-signal regulated kinase 1/2 (ERK), are activated by NECA and UTP. H-89 blocks ERK activation by forskolin, but weakly affects the response to NECA or UTP. ERK activation by NECA or UTP is unaffected by a tyrosine kinase inhibitor (genistein), attenuated by a phospholipase C inhibitor (U73122), and is abolished by a MEK inhibitor (PD098059) or dominant negative Ras. Inhibition of protein kinase C (PKC) by GF 109203X failed to block ERK activation by NECA or UTP, however, another PKC inhibitor, Ro 31-8220, which unlike GF 109203X, can block the zeta-isoform, and prevents UTP- but not NECA-induced ERK activation. In the presence of forskolin, Ro 31-8220 loses its ability to block UTP-stimulated ERK activation. PKA has opposing effects on B-Raf and c-Raf-1, both of which are found in HEK-293 cells. The data are explained by a model in which ERK activity is modulated by differential effects of PKC zeta and PKA on Raf isoforms.  (+info)

A comparison of an A1 adenosine receptor agonist (CVT-510) with diltiazem for slowing of AV nodal conduction in guinea-pig. (3/1179)

1. The purpose of this study was to compare the pharmacological properties (i.e. the AV nodal depressant, vasodilator, and inotropic effects) of two AV nodal blocking agents belonging to different drug classes; a novel A1 adenosine receptor (A1 receptor) agonist, N-(3(R)-tetrahydrofuranyl)-6-aminopurine riboside (CVT-510), and the prototypical calcium channel blocker diltiazem. 2. In the atrial-paced isolated heart, CVT-510 was approximately 5 fold more potent to prolong the stimulus-to-His bundle (S-H interval), a measure of slowing AV nodal conduction (EC50 = 41 nM) than to increase coronary conductance (EC50 = 200 nM). At concentrations of CVT-510 (40 nM) and diltiazem (1 microM) that caused equal prolongation of S-H interval (approximately 10 ms), diltiazem, but not CVT-510, significantly reduced left ventricular developed pressure (LVP) and markedly increased coronary conductance. CVT-510 shortened atrial (EC50 = 73 nM) but not the ventricular monophasic action potentials (MAP). 3. In atrial-paced anaesthetized guinea-pigs, intravenous infusions of CVT-510 and diltiazem caused nearly equal prolongations of P-R interval. However, diltiazem, but not CVT-510, significantly reduced mean arterial blood pressure. 4. Both CVT-510 and diltiazem prolonged S-H interval, i.e., slowed AV nodal conduction. However, the A1 receptor-selective agonist CVT-510 did so without causing the negative inotropic, vasodilator, and hypotensive effects associated with diltiazem. Because CVT-510 did not affect the ventricular action potential, it is unlikely that this agonist will have a proarrythmic action in ventricular myocardium.  (+info)

Purification of A1 adenosine receptor-G-protein complexes: effects of receptor down-regulation and phosphorylation on coupling. (4/1179)

We examined the effects of exposing A1 adenosine receptors (A1ARs) to an agonist on the stability and phosphorylation state of receptor-guanine nucleotide-binding regulatory protein (R-G-protein) complexes. Non-denatured recombinant human A1ARs extended on the N-terminus with hexahistidine (His6) and the FLAG (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) epitope (H/F) were purified to near homogeneity from stably transfected Chinese-hamster ovary (CHO)-K1 cells. Purified receptors have pharmacological properties similar to receptors in membranes. G-proteins were co-purified with 15+/-2% of H/F-A1AR unless receptor-G-protein (R-G) complexes were uncoupled by pre-treating cell membranes with GTP. By silver staining, purified A1AR-G-protein complexes contain receptors, G-protein alpha and beta subunits and an unidentified 97 kDa protein. Pretreating intact cells with N6-cyclopentyladenosine (CPA) for 24 h decreased both the total number of receptors measured in membranes and the number of purified A1ARs by about 50%. In contrast, pretreating cells with CPA decreased the number of R-G complexes measured in membranes (54+/-6%) significantly less than it decreased the number of purified R-G complexes (78+/-3%) as detected by 125I-N6-(4-aminobenzyl)adenosine binding or by Western blotting Gialpha2. The effect of CPA to decrease the fraction of receptors purified as R-G complexes was not associated with any change in low-level A1AR phosphorylation (found on serine), or low-level phosphorylation of G-protein alpha or beta subunits or the 97 kDa protein. These experiments reveal a novel aspect of agonist-induced down-regulation, namely a diminished stability of receptor-G-protein complexes that is manifested as uncoupling during receptor purification.  (+info)

Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. (5/1179)

Signaling through A2A adenosine receptors (A2AR) regulates T lymphocyte expansion and modulates T cell receptor (TCR)-mediated effector functions in vitro. To understand the role of A2ARs in the regulation of immune response, we investigated the expression levels of this receptor in different functional lymphocyte subsets. Monoclonal anti-A2AR antibody was used to develop a flow cytometric assay to quantify the expression A2ARs on lymphocytes. We report that detectable levels of expression of A2ARs are much higher among T cells than B cells. More CD4(+) than CD8(+) T cells express A2ARs, but activation of T cells increases A2AR expression, predominantly in CD8(+) T cells. No significant differences were found in the proportion of A2AR+ cells between CD8(low) and CD8(high) T cells or between TCR/CD3(low) and TCR/CD3(high) T cells. Studies of T helper cell subsets (TH1 and TH2) reveal that lymphokine-producing cells are much more likely to express A2ARs than are cells that do not produce lymphokines. These results suggest that A2ARs are variably expressed on T cell subsets and may regulate cytokine production in activated T lymphocytes.  (+info)

Carbamazepine-induced upregulation of adenosine A1-receptors in astrocyte cultures affects coupling to the phosphoinositol signaling pathway. (6/1179)

The anticonvulsant and antibipolar drug carbamazepine (CBZ) is known to act as a specific antagonist at adenosine A1-receptors. After a 3-week application of CBZ, A1-receptors are upregulated in the rat brain. We have investigated the consequences of this upregulation for the A1-receptor-mediated signal transduction in primary astrocyte cultures from different regions of the rat brain. CBZ treatment for 10 days had no effect on adenosine A1-receptor mRNA expression in cultures with high basal A1-receptor mRNA levels, but increased A1-receptor mRNA in cultures exhibiting low basal A1-receptor mRNA levels. This upregulation of A1-receptor mRNA was accompanied by an upregulation or induction of A1-receptor-mediated potentiation of PLC activity, a property that was not found in these cultures before CBZ treatment. Thus, CBZ treatment for 10 days induces a new quality of adenosine A1-receptor-mediated signal transduction in cells that express low basal A1-receptor numbers.  (+info)

Adenosine inhibits the transfected Na+-H+ exchanger NHE3 in Xenopus laevis renal epithelial cells (A6/C1). (7/1179)

1. Adenosine influences the vectorial transport of Na+ and HCO3- across kidney epithelial cells. However, its action on effector proteins, such as the Na+-H+ exchanger NHE3, an epithelial brush border isoform of the Na+-H+ exchanger (NHE) gene family, is not yet defined. 2. The present study was conducted in Xenopus laevis distal nephron A6 epithelia which express both an apical adenosine receptor of the A1 type (coupled to protein kinase C (PKC)) and a basolateral receptor of the A2 type (coupled to protein kinase A (PKA)). The untransfected A6 cell line expresses a single NHE type (XNHE) which is restricted to the basolateral membrane and which is activated by PKA. 3. A6 cell lines were generated which express exogenous rat NHE3. Measurements of side-specific pHi recovery from acid loads in the presence of HOE694 (an inhibitor with differential potency towards individual NHE isoforms) detected an apical resistant Na+-H+ exchange only in transfected cell lines. The sensitivity of the basolateral NHE to HOE694 was unchanged, suggesting that exogenous NHE3 was restricted to the apical membrane. 4. Stimulation of the apical A1 receptor with N 6-cyclopentyladenosine (CPA) inhibited both apical NHE3 and basolateral XNHE. These effects were mimicked by the addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and partially prevented by the PKC inhibitor calphostin C which also blocked the effect of PMA. 5. Stimulation of the basolateral A2 receptor with CPA inhibited apical NHE3 and stimulated basolateral XNHE. These effects were mimicked by 8-bromo-cAMP and partially prevented by the PKA inhibitor H89 which entirely blocked the effect of 8-bromo-cAMP. 6. In conclusion, CPA inhibits rat NHE3 expressed apically in A6 epithelia via both the apical PKC-coupled A1 and the basolateral PKA-coupled A2 adenosine receptors.  (+info)

A3 adenosine receptors regulate Cl- channels of nonpigmented ciliary epithelial cells. (8/1179)

Adenosine stimulates Cl- channels of the nonpigmented (NPE) cells of the ciliary epithelium. We sought to identify the specific adenosine receptors mediating this action. Cl- channel activity in immortalized human (HCE) NPE cells was determined by monitoring cell volume in isotonic suspensions with the cationic ionophore gramicidin present. The A3-selective agonist N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) triggered shrinkage (apparent Kd = 55 +/- 10 nM). A3-selective antagonists blocked IB-MECA-triggered shrinkage, and A3-antagonists (MRS-1097, MRS-1191, and MRS-1523) also abolished shrinkage produced by 10 microM adenosine when all four known receptor subtypes are occupied. The A1-selective agonist N6-cyclopentyladenosine exerted a small effect at 100 nM but not at higher or lower concentrations. The A2A agonist CGS-21680 triggered shrinkage only at high concentration (3 microM), an effect blocked by MRS-1191. IB-MECA increased intracellular Ca2+ in HCE cells and also stimulated short-circuit current across rabbit ciliary epithelium. A3 message was detected in both HCE cells and rabbit ciliary processes using RT-PCR. We conclude that human HCE cells and rabbit ciliary processes possess A3 receptors and that adenosine can activate Cl- channels in NPE cells by stimulating these A3 receptors.  (+info)