Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity. (49/182)

Prostaglandins (PG) are key mediators of diverse functions in the skin and several reports suggest that PG mediate post-inflammatory pigmentary changes through modulation of melanocyte dendricity and melanin synthesis. The proteinase-activated receptor 2 (PAR-2) is important for skin pigmentation because activation of keratinocyte PAR-2 stimulates uptake of melanosomes through phagocytosis in a Rho-dependent manner. In this report, we show that activation of keratinocyte PAR-2 stimulates release of PGE(2) and PGF(2alpha) and that PGE(2) and PGF(2alpha) act as paracrine factors that stimulate melanocyte dendricity. We characterized the expression of the EP and FP receptors in human melanocytes and show that human melanocytes express EP1 and EP3, and the FP receptor, but not EP2 and EP4. Treatment of melanocytes with EP1 and EP3 receptor agonists resulted in increased melanocyte dendricity, indicating that both EP1 and EP3 receptor signaling contribute to PGE(2)-mediated melanocyte dendricity. Certain EP3 receptor subtypes have been shown to increase adenosine 3',5'-cyclic monophosphate (cAMP) through coupling to Gs, whereas EP1 is known to couple to Gq to activate phospholipase C with elevation in Ca(2+). The cAMP/protein kinase A system is known to modulate melanocyte dendrite formation through modulation of Rac and Rho activity. Neither PGF(2alpha) or PGE(2) elevated cAMP in human melanocytes showing that dendricity observed in response to PGE(2) and PGF(2alpha) is cAMP-independent. Our data suggest that PAR-2 mediates cutaneous pigmentation both through increased uptake of melanosomes by keratinocytes, as well as by release of PGE(2) and PGF(2alpha) that stimulate melanocyte dendricity through EP1, EP3, and FP receptors.  (+info)

Reduced IP receptors in STZ-induced diabetic rat kidneys and high-glucose-treated mesangial cells. (50/182)

Mesangial cells (MG) are an important source of renal PGE2 and PGI2. The purpose of this study was to examine the effects of cicaprost (CCP; PGI2 analog) on MG function and the expression of IP receptors in streptozotocin (STZ)-diabetic rats and glucose-treated MG cells. CCP increased cellular cAMP in immortalized rat MG cells. Both glucose and anisomycin attenuated CCP-cAMP, but not PMA, angiotensin II, or transforming growth factor-beta. Also, IP receptor protein was reduced in response to glucose. While CCP decreased the levels of the cell cycle inhibitor p27, it did not alter thymidine or leucine incorporation. However, CCP reduced fibronectin levels by 40% and increased matrix metalloproteinase-2 levels threefold, a key enzyme in matrix degradation. Finally, IP receptors were significantly reduced in the outer medulla of 4- and 12-wk STZ-diabetic rats and in the cortex, outer, and inner medullary regions in 6-mo uninephrectomized STZ-diabetic rats. The changes in the CCP/IP system observed in this study suggest that IP may serve as an alternate therapeutic target in diabetes.  (+info)

Augmentation of bovine airway smooth muscle responsiveness to carbachol, KCl, and histamine by the isoprostane 8-iso-PGE2. (51/182)

Isoprostanes are generated during periods of oxidative stress, which characterize diseases such as asthma and cystic fibrosis. They also elicit functional responses and may therefore contribute to the pathology of these diseases. We set out to examine the effects of isoprostanes on airway responsiveness to cholinergic stimulation. Muscle bath techniques were employed using isolated bovine tracheal smooth muscle. 8-Isoprostaglandin E2 (8-iso-PGE2) increased tone directly on its own, although the magnitude of this response, even at the highest concentration tested, was only a fraction of that evoked by KCl or carbachol. More importantly, though, pretreatment of the tissues with 8-iso-PGE2 (10 microM) markedly augmented responses to submaximal and even subthreshold concentrations of KCl, carbachol, or histamine, whereas maximal responses to these agents were unaffected by the isoprostane. The augmentative effect on cholinergic responsiveness was mimicked by PGE2 (0.1 microM) and by the FP agonists PGF2 (0.1 microM) and fluprostenol (0.1 microM), but not by the EP3 agonist sulprostone (0.1 microM) or the TP agonist U-46619 (0.1 microM). Antagonists of EP1 receptors (AH-6809 and SC-19920, 10 microM) and TP receptors (ICI-192605, 1 microM) had no effect on 8-iso-PGE2-induced augmentation of cholinergic responsiveness. We conclude that 8-iso-PGE2 induces nonspecific airway smooth muscle hyperresponsiveness through a non-TP non-EP prostanoid receptor.  (+info)

Interleukin-1beta-induced mucin production in human airway epithelium is mediated by cyclooxygenase-2, prostaglandin E2 receptors, and cyclic AMP-protein kinase A signaling. (52/182)

We reported recently that interleukin (IL)-1beta exposure resulted in a prolonged increase in MUC5AC mucin production in normal, well differentiated, human tracheobronchial epithelial (NHTBE) cell cultures, without significantly increasing MUC5AC mRNA (Am J Physiol 286:L320-L330, 2004). The goal of the present study was to elucidate the signaling pathways involved in IL-1beta-induced MUC5AC production. We found that IL-1beta increased cyclooxygenase-2 (COX-2) mRNA expression and prostaglandin (PG) E(2) production and that the COX-2 inhibitor celecoxib suppressed IL-1beta-induced MUC5AC production. Addition of exogenous PGE(2) to NHTBE cultures also increased MUC5AC production and IL-1beta-induced Muc5ac hypersecretion in tracheas from wild-type but not from COX-2-/- mice. NHTBE cells expressed all four E-prostanoid (EP) receptor subtypes and misoprostol, an EP2 and EP4 agonist, increased MUC5AC production, whereas sulprostone, an EP1 and EP3 agonist, did not. Furthermore, specific protein kinase A (PKA) inhibitors blocked IL-1beta and PGE(2)-induced MUC5AC production. However, neither inhibition of epidermal growth factor receptor (EGFR) activation with the tyrosine kinase inhibitor 4-(3-chloroanilino)-6,7-dimethoxyquinazoline HCl (AG-1478) or EGFR blocking antibody nor inhibition of extracellular signal-regulated kinase/P-38 mitogen activated protein kinases with specific inhibitors blocked IL-1beta stimulation of MUC5AC mucin production. We also observed that tumor necrosis factor (TNF)-alpha, platelet activating factor (PAF), and lipopolysaccharide (LPS) induced COX-2 and increased MUC5AC production that was blocked by celecoxib, suggesting a common signaling pathway of inflammatory mediator-induced MUC5AC production in NHTBE cells. We conclude that the induction of MUC5AC by IL-1beta, TNF-alpha, PAF, and LPS involves COX-2- generated PGE(2), activation of EP2 and/or EP4 receptor(s), and cAMP-PKA-mediated signaling.  (+info)

Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves. (53/182)

Induction of cyclooxygenase-2 (COX-2) in the renal pelvic wall increases prostaglandin E(2) (PGE(2)) leading to stimulation of cAMP production, which results in substance P (SP) release and activation of renal mechanosensory nerves. The subtype of PGE receptors involved, EP2 and/or EP4, was studied by immunohistochemistry and renal pelvic administration of agonists and antagonists of EP2 and EP4 receptors. EP4 receptor-like immunoreactivity (LI) was colocalized with calcitonin gene-related peptide (CGRP)-LI in dorsal root ganglia (DRGs) at Th(9)-L(1) and in nerve terminals in the renal pelvic wall. Th(9)-L(1) DRG neurons also contained EP3 receptor-LI and COX-2-LI, each of which was colocalized with CGRP-LI in some neurons. No renal pelvic nerves contained EP3 receptor-LI and only very few nerves COX-2-LI. The EP1/EP2 receptor antagonist AH-6809 (20 microM) had no effect on SP release produced by PGE(2) (0.14 microM) from an isolated rat renal pelvic wall preparation. However, the EP4 receptor antagonist L-161,982 (10 microM) blocked the SP release produced by the EP2/EP4 receptor agonist butaprost (10 microM) 12 +/- 2 vs. 2 +/- 1 and PGE(2), 9 +/- 1 vs. 1 +/- 0 pg/min. The SP release by butaprost and PGE(2) was similarly blocked by the EP4 receptor antagonist AH-23848 (30 microM). In anesthetized rats, the afferent renal nerve activity (ARNA) responses to butaprost 700 +/- 100 and PGE(2).780 +/- 100%.s (area under the curve of ARNA vs. time) were unaffected by renal pelvic perfusion with AH-6809. However, 1 microM L-161,982 and 10 microM AH-23848 blocked the ARNA responses to butaprost by 94 +/- 5 and 78 +/- 10%, respectively, and to PGE(2) by 74 +/- 16 and 74 +/- 11%, respectively. L-161,982 also blocked the ARNA response to increasing renal pelvic pressure 10 mmHg, 85 +/- 5%. In conclusion, PGE(2) increases renal pelvic release of SP and ARNA by activating EP4 receptors on renal sensory nerve fibers.  (+info)

Transforming growth factor-beta (TGF-beta) activates cytosolic phospholipase A2alpha (cPLA2alpha)-mediated prostaglandin E2 (PGE)2/EP1 and peroxisome proliferator-activated receptor-gamma (PPAR-gamma)/Smad signaling pathways in human liver cancer cells. A novel mechanism for subversion of TGF-beta-induced mitoinhibition. (54/182)

Transforming growth factor-beta (TGF-beta) potently inhibits the growth of human epithelial cells. However, neoplastic epithelial cells become resistant to TGF-beta-mediated mitoinhibition, and the mechanisms for this alteration during tumorigenesis are not fully understood. This study was designed to determine whether there is an association between the cytosolic phospholipase A2alpha (cPLA2alpha)-controlled eicosanoid metabolism and the growth response to TGF-beta in human liver cancer cells. TGF-beta treatment induced simultaneous Smad-mediated gene transcription and phosphorylation of cPLA2alpha. Whereas Smad activation inhibited tumor cell growth, phosphorylation of cPLA2 alpha promoted growth and counteracted Smad-mediated mitoinhibition. TGF-beta1 failed to prevent the growth of cells with high basal expression of cPLA2alpha, but inhibition of cPLA2 alpha, cyclooxygenase-2 (COX-2), or EP1 receptor restored mitoinhibition by TGF-beta1 in these cells. These results suggest that resistance of tumor cells to TGF-beta-mediated mitoinhibition involves activation of cPLA2alpha/COX-2/EP1 signaling. Furthermore, the TGF-beta1-induced Smad transcriptional activity and mitoinhibition were blocked by overexpression of cPLA2alpha or peroxisome proliferator-activated receptor-gamma (PPAR-gamma) but enhanced by depletion of cPLA2alpha or PPAR-gamma. These findings, along with the observations that cPLA2alpha activates PPAR-gamma and that PPAR-gamma binds Smad3, illustrate novel cPLA2alpha/COX-2/EP1 and cPLA2alpha/PPAR-gamma/Smad signaling pathways that counteract the mitoinhibition by TGF-beta in human cancer cells.  (+info)

Differential effects of vasodilatory prostaglandins on focal adhesions, cytoskeletal architecture, and migration in human aortic smooth muscle cells. (55/182)

OBJECTIVE: Cyclooxygenases 1 and 2 are expressed in atherosclerotic arteries, and local generation of prostacyclin and prostaglandin E2 (PGE2) occurs. However, the role of cyclooxygenases and individual prostaglandins during plaque progression is currently uncertain. The present study characterizes the effect of vasodilatory prostaglandins on morphology, focal adhesion (FA) function, and migration in human aortic smooth muscle cells (SMCs). METHODS AND RESULTS: The stable prostacyclin analog iloprost transiently induced: (1) disassembly of FA and stress fibers, (2) partial retraction and rounding of SMCs, (3) hypophosphorylation of FA kinase (FAK) and paxillin, and (4) inhibition of platelet-derived growth factor-BB-induced migration. Inhibition of FAK phosphorylation and morphological changes were mimicked by forskolin, inhibited by H89, and prevented by the protein tyrosine phosphatase inhibitor vanadate and by calpeptin. PGE2 was by far less efficient with respect to all parameters investigated. This difference correlated with the respective cAMP induction in response to iloprost and PGE2. CONCLUSIONS: Inhibition of FAK phosphorylation and FA function is a new target of vasodilatory prostaglandins, which might be causally involved in the antimigratory effects of prostaglandins. Importantly, prostacyclin analogs and PGE2 differ dramatically with respect to dephosphorylation of FAK and inhibition of migration, which might be of relevance for their respective functions in atherosclerosis.  (+info)

Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. (56/182)

Prostaglandin E(2) exerts its biological activity through binding to its membrane receptors, E-prostanoid (EP) receptors. Our previous finding that lack of EP(1) receptor inhibits the early stages of colon carcinogenesis led us to investigate whether EP(1) receptor deficiency reduces colon cancer development induced by azoxymethane (AOM) using EP(1) receptor knockout mice. At 6 weeks of age 33 homozygous EP(1)-deficient (EP(1)(-/-)) mice and 28 wild-type (EP(1)(+/+)) mice were given i.p. AOM (10 mg/kg body wt) once a week for 6 weeks. At 56 weeks of age all animals were killed and intestinal tumors were examined. The results clearly indicated that lack of EP(1) receptor significantly reduced colon cancer incidence (27 versus 57%, P < 0.05) and multiplicity (0.30 versus 0.76, P < 0.05) as well as tumor volume (12.2 versus 75.6 mm(3), P < 0.05). In EP(1)(-/-) mice, silver stained nucleolar organization region protein count as cell proliferation marker was significantly reduced (1.35 versus 2.17, P < 0.001) and apoptosis was significantly increased (0.685 versus 0.077, P < 0.001) in colon tumors induced by AOM compared with those in EP(1)(+/+) mice. We confirmed that EP(1) receptor mRNA was overexpressed in colon cancers of EP(1)(+/+) mice using reverse transcription-polymerase chain reaction. These results provide strong evidence that the EP(1) receptor is of major importance for colon cancer development and it could be a new target for a mechanism-based chemoprevention strategy against colon cancer development.  (+info)