Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. (41/182)

Previous studies have disagreed about whether prostaglandin EP1 or EP3 receptors are critical for producing febrile responses. We therefore injected lipopolysaccharide (LPS) at a variety doses (1 microg kg(-1)-1 mg kg(-1)) intraperitoneally (i.p.) into wild-type (WT) mice and mice lacking the EP1 or the EP3 receptors and measured changes in core temperature (Tc) by using telemetry. In WT mice, i.p. injection of LPS at 10 microg kg(-1) increased Tc about 1 degrees C, peaking 2 h after injection. At 100 microg kg(-1), LPS increased Tc, peaking 5-8 h after injection. LPS at 1 mg kg(-1) decreased Tc, reaching a nadir at 5-8 h after injection. In EP1 receptor knockout (KO) mice injected with 10 microg kg(-1) LPS, only the initial (< 40 min) increase in Tc was lacking; with 100 microg kg(-1) LPS the mice showed no febrile response. In EP3 receptor KO mice, LPS decreased Tc in a dose- and time-dependent manner. Furthermore, in EP3 receptor KO mice subcutaneous injection of turpentine did not induce fever. Both EP1 and EP3 receptor KO mice showed a normal circadian cycle of Tc and brief hyperthermia following psychological stress (cage-exchange stress and buddy-removal stress). The present study suggests that both the EP1 and the EP3 receptors play a role in fever induced by systemic inflammation but neither EP receptor is involved in the circadian rise in Tc or psychological stress-induced hyperthermia in mice.  (+info)

Increased expression of cyclooxygenase-1 and -2 in the diabetic rat renal medulla. (42/182)

Alterations in renal prostaglandins (PGs) may contribute to some of the renal manifestations in diabetes leading to nephropathy. PG production is dependent on the activity of cyclooxygenases (COX-1 AND -2) and PG synthases. Our present study investigated levels of these enzymes in streptozotocin-diabetic rats at 2, 4, 6, and 8 wk of diabetes. Immunohistochemical analysis revealed an increase in COX signal in the inner and outer medulla of diabetic rats. This was confirmed by Western blotting, showing up to a fourfold increase in both COX isoforms at 4-6 wk of diabetes. Also, Western blot analysis revealed a sixfold increase in PGE2 synthase expression in the outer medullary region of 6-wk diabetic rats but no difference in the inner medulla. In cultured rat inner medullary collecting duct (IMCD), levels of COX were increased two- to threefold in cells exposed for 4 days to 37.5 mM glucose compared with control of 17.5 mM. While no change in PGE2 synthase levels was noted, PGE2 synthesis was increased. Furthermore, levels of EP1 and EP4 mRNA were increased, as well as a twofold increase in EP4 protein levels. Future studies will determine which COX isoform is contributing to the majority of PGE2 produced in the diabetic IMCD and the significance of these findings to disturbances in IMCD function and to the progression of diabetic nephropathy.  (+info)

Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. (43/182)

The synaptic release of glutamate evokes in astrocytes periodic increases in [Ca2+]i, due to the activation of metabotropic glutamate receptors (mGluRs). The frequency of these [Ca2+]i oscillations is controlled by the level of neuronal activity, indicating that they represent a specific, frequency-coded signalling system of neuron-to-astrocyte communication. We recently found that neuronal activity-dependent [Ca2+]i oscillations in astrocytes are the main signal that regulates the coupling between neuronal activity and blood flow, the so-called functional hyperaemia. Prostaglandins play a major role in this fundamental phenomenon in brain function, but little is known about a possible link between [Ca2+]i oscillations and prostaglandin release from astrocytes. To investigate whether [Ca2+]i oscillations regulate the release of vasoactive prostaglandins, such as the potent vasodilator prostaglandin E2 (PGE2), from astrocytes, we plated wild-type human embryonic kidney (HEK)293 cells, which respond constitutively to PGE2 with [Ca2+]i elevations, onto cultured astrocytes, and used them as biosensors of prostaglandin release. After loading the astrocyte-HEK cell co-cultures with the calcium indicator Indo-1, confocal microscopy revealed that mGluR-mediated [Ca2+]i oscillations triggered spatially and temporally coordinated [Ca2+]i increases in the sensor cells. This response was absent in a clone of HEK cells that are unresponsive to PGE2, and recovered after transfection with the InsP3-linked prostanoid receptor EP1. We conclude that [Ca2+]i oscillations in astrocytes regulate prostaglandin releases that retain the oscillatory behaviour of the [Ca2+]i changes. This finely tuned release of PGE2 from astrocytes provides a coherent mechanistic background for the role of these glial cells in functional hyperaemia.  (+info)

Role of prostaglandin E receptor EP1 subtype in the development of renal injury in genetically hypertensive rats. (44/182)

One of the major causes of end-stage renal diseases is hypertensive renal disease, in which enhanced renal prostaglandin (PG) E2 production has been shown. PGE2, a major arachidonic acid metabolite produced in the kidney, acts on 4 receptor subtypes, EP1 through EP4, but the pathophysiological importance of the PGE2/EP subtypes in the development of hypertensive renal injury remains to be elucidated. In this study, we investigated whether an orally active EP1-selective antagonist (EP1A) prevents the progression of renal damage in stroke-prone spontaneously hypertensive rats (SHRSP), a model of human malignant hypertension. Ten-week-old SHRSP, with established hypertension but with minimal renal damage, were given EP1A or vehicle for 5 weeks. After the treatment period, vehicle-treated SHRSP showed prominent proliferative lesions in arterioles, characterized by decreased alpha-smooth muscle actin expression in multilayered vascular smooth muscle cells. Upregulation of transforming growth factor-beta expression and tubulointerstitial fibrosis were also observed in vehicle-treated SHRSP. All these changes were dramatically attenuated in EP1A-treated SHRSP. Moreover, EP1A treatment significantly inhibited both increase in urinary protein excretion and decrease in creatinine clearance but had little effect on systemic blood pressure. These findings indicate that the PGE2/EP1 signaling pathway plays a crucial role in the development of renal injury in SHRSP. This study opens a novel therapeutic potential of selective blockade of EP1 for the treatment of hypertensive renal disease.  (+info)

Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. (45/182)

Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin H synthase, has been implicated in the progression of human lung adenocarcinoma. However, the mechanism underlying COX-2's effect on tumor progression remains largely unknown. Lymphangiogenesis, the formation of new lymphatic vessels, has recently received considerable attention and become a new frontier of tumor metastasis research. Here, we study the interaction between COX-2 and the lymphangiogenic factor, vascular endothelial growth factor (VEGF)-C, in human lung cancer cells and their implication in patient outcomes. We developed an isopropyl-beta-D-thiogalactopyranoside-inducible COX-2 gene expression system in human lung adenocarcinoma CL1.0 cells. We found that VEGF-C gene expression but not VEGF-D was significantly elevated in cells overexpressing COX-2. COX-2-mediated VEGF-C up-regulation was commonly observed in a broad array of non-small cell lung cancer cell lines. The use of pharmacological inhibitors or activators and genetic inhibition by EP receptor-antisense oligonucleotides revealed that prostaglandin EP(1) receptor but not other prostaglandin receptors is involved in COX-2-mediated VEGF-C up-regulation. At the mechanistic level, we found that COX-2 expression or prostaglandin E(2) (PGE(2)) treatment could activate the HER-2/Neu tyrosine kinase receptor through the EP(1) receptor-dependent pathway and that this activation was essential for VEGF-C induction. The transactivation of HER-2/Neu by PGE(2) was inhibited by way of blocking the Src kinase signaling using the specific Src family inhibitor, PP1, or transfection with the mutant dominant negative src plasmid. Src kinase was involved in not only the HER-2/Neu transactivation but also the following VEGF-C up-regulation by PGE(2) treatment. In addition, immunohistochemical staining of 59 lung adenocarcinoma specimens showed that COX-2 level was highly correlated with VEGF-C, lymphatic vessels density, and other clinicopathological parameters. Taken together, our results provided evidence that COX-2 up-regulated VEGF-C and promotes lymphangiogenesis in human lung adenocarcinoma via the EP(1)/Src/HER-2/Neu signaling pathway.  (+info)

Prostacyclin induces apoptosis of vascular smooth muscle cells by a cAMP-mediated inhibition of extracellular signal-regulated kinase activity and can counteract the mitogenic activity of endothelin-1 or basic fibroblast growth factor. (46/182)

Prostanoids can suppress vascular smooth muscle cell (VSMC) proliferation, but the mechanism through which this is mediated has not been identified. In this study, we show rat aortic VSMCs to express the EP1, EP2, EP3, EP4, and IP receptors. The EP4 receptor-specific agonist, 11-deoxy-PGE1, induced a time-dependent phosphorylation of protein kinase C and extracellular signal-regulated kinase (ERK) 1/2 in serum-depleted (0.1%) VSMCs, whereas the EP2 receptor agonist, butaprost, was without effect. PGI2 or iloprost at the IP receptor inhibited basal ERK phosphorylation with IC50 values of 10 nmol/L. Iloprost also attenuated the sustained activation of ERK induced by endothelin-1 or basic fibroblast growth factor (bFGF). Endothelin-1 or bFGF significantly increased the number of VSMCs counted 24 hours later compared with basal, and both responses were blocked by the MEK inhibitor, U0126, or iloprost. Under basal conditions, U0126 or iloprost reduced the number of viable cells and increased caspase-3 activity, which could be reversed by coapplication with endothelin-1, bFGF, or the adenylate cyclase inhibitor, SQ22536. Endothelin-1, bFGF, or SQ22536 prevented the depression to below basal levels of ERK phosphorylation induced by iloprost. Forskolin activated caspase-3 and attenuated basal ERK phosphorylation, which were prevented by SQ22536, endothelin-1, or bFGF. These data suggest that iloprost induces apoptosis via a cAMP-mediated suppression of ERK activity. In turn, this apoptotic response can be blocked by a mitogenic stimulus that re-establishes ERK activity back to basal levels, but at the expense of any concomitant proliferative activity. However, ERK stimulation by a selective EP4 receptor agonist, suggests that prostanoids may have diverse and complex roles in VSMC physiology.  (+info)

EP1- and FP-mediated cross-desensitization of the alpha (alpha) and beta (beta) isoforms of the human thromboxane A2 receptor. (47/182)

1. Heterologous desensitization or intermolecular cross-talk plays a critical role in regulating intracellular signalling by diverse members of the G-protein-coupled receptor superfamily. We have previously established that the alpha and beta isoforms of the human thromboxane A(2) receptor (TP) undergo differential desensitization of signalling in response to 17 phenyl trinor prostaglandin (PG)E(2), an agonist of the EP(1) subtype of the PGE(2) receptor (EP) family. 2. Herein, we investigated the molecular basis of TPalpha and TPbeta desensitization in human embryonic kidney (HEK) 293 cells and in renal mesangial cells in response to 17 phenyl trinor PGE(2) and in response to the PGF(2alpha) receptor (FP) agonist PGF(2alpha), and sought to identify the target site(s) of those desensitizations. 3. Our results demonstrated that TPalpha and TPbeta receptors are subject to desensitization in response to both EP(1) and FP receptor activation and that these effects are mediated by direct protein kinase (PK)C phosphorylation of the individual TP isoforms within their unique carboxyl-terminal (C)-tail domains. 4. Moreover, deletion/site-directed mutagenesis and metabolic labelling studies identified Thr(337), within TPalpha, and Thr(399), within TPbeta, as the specific target residues for PKC phosphorylation and EP(1)- and FP-mediated desensitization of TPalpha and TPbeta signalling, respectively. 5. Hence, in conclusion, while the TPalpha and TPbeta diverge within their C-tail domains, they have evolved to share a similar mechanism of PKC-induced phosphorylation and desensitization in response to EP(1) and FP receptor activation, though it occurs at sites unique to the individual TP isoforms.  (+info)

Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys. (48/182)

PGE(2) is a potent stimulator of renin release. So far, the contribution of each of the four PGE(2) receptor subtypes (EP(1)-EP(4)) in the regulation of renin release has not been characterized. Therefore, we investigated the effects PGE(2) on renin secretion rates (RSR) from isolated, perfused kidneys of EP(1)-/-, EP(2)-/-, EP(3)-/-, EP(4)-/-, and wild-type mice. PGE(2) concentration dependently stimulated RSR from kidneys of all four knockout strains with a threshold concentration of 1 nM in EP(1)-/-, EP(2)-/-, EP(3)-/-, and wild-type mice, whereas the threshold concentration was shifted to 10 nM in EP(4)-/- mice. Moreover, the maximum stimulation of RSR by PGE(2) at 1 microM was significantly reduced in EP(4)-/- (12.8-fold of control) and EP(2)-/- (15.9-fold) compared with wild-type (20.7-fold), EP(1)-/- (23.8-fold), and EP(3)-/- (20.1-fold). In contrast, stimulation of RSR by either the loop diuretic bumetanide or the beta-adrenoceptor agonist isoproterenol was similar in all strains. PGE(2) exerted a dual effect on renal vascular tone, inducing vasodilatation at low concentrations (1 nmol/) and vasoconstriction at higher concentrations (100 nmol/) in kidneys of wild-type mice. In kidneys of EP(2)-/- as well as EP(4)-/- mice, vasodilatation at low PGE(2) concentrations was prevented, whereas vasoconstriction at higher concentrations was augmented. In contrast, the vasodilatory component was pronounced in kidneys of EP(1) and EP(3) knockout mice, whereas in both genotypes the vasoconstriction at higher PGE(2) concentrations was markedly blunted. Our data provide evidence that PGE(2) stimulates renin release via activation of EP(2) and EP(4) receptors, whereas EP(1) and EP(3) receptors appear to be without functional relevance in juxtaglomerular cells. In contrast, all four receptor subtypes are involved in the control of renal vascular tone, EP(1) and EP(3) receptors increasing, and EP(2) as well as EP(4) receptors, decreasing it.  (+info)