The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in vitiligo. (57/206)

Vitiligo is a common depigmenting disorder resulting from the loss of melanocytes in the skin. The pathogenesis of the disease remains obscure, although autoimmune mechanisms are thought to be involved. Indeed, autoantibodies and autoreactive T lymphocytes that target melanocytes have been reported in some vitiligo patients. The objective of this study was to identify pigment cell antigens that are recognized by autoantibodies in vitiligo. Using IgG from vitiligo patients to screen a melanocyte cDNA phage-display library, we identified the melanin-concentrating hormone receptor 1 (MCHR1) as a novel autoantigen related to this disorder. Immunoreactivity against the receptor was demonstrated in vitiligo patient sera by using radiobinding assays. Among sera from healthy controls and from patients with autoimmune disease, none exhibited immunoreactivity to MCHR1, indicating a high disease specificity for Ab's against the receptor. Inhibition of MCH binding to its receptor by IgG from vitiligo patients was also shown.  (+info)

Up-regulation of mesotocin receptors in the tammar wallaby myometrium is pregnancy-specific and independent of estrogen. (58/206)

The oxytocin-like peptide of most Australian marsupials is mesotocin, which stimulates uterine contractions and is important for normal birth in the tammar wallaby. Female marsupials have two uteri and, in monovular species such as the tammar, one uterus is gravid with a single fetus, whereas the contralateral uterus is nongravid. A significant increase in myometrial mesotocin receptor concentrations occurs only in the gravid uterus on Day 23 of the 26-day gestation. This study examined whether or not mesotocin receptors are present in the myometrium and are up-regulated at the equivalent stage of the luteal phase in unmated tammars. In contrast to the marked increase in mesotocin receptor mRNA and protein concentrations in the myometrium of the gravid uterus during pregnancy, receptors did not increase in the unmated animals. There were also no significant differences between the two uteri, except on Day 27. Plasma profiles of peripheral estradiol-17beta and progesterone did not differ significantly between pregnant and nonpregnant cycles. However, progesterone concentrations were significantly lower on Day 1 postpartum compared with Day 27 of the nonpregnant cycle. In pregnant tammars, the molar ratio of circulating estradiol-17beta to progesterone increased significantly between Day 25 of gestation and 1 day postpartum, but was not correlated with an increase in mesotocin receptor concentrations in either uterus. The data confirm that a local fetal influence is more important than systemic factors, such as estrogen, in the regulation of uterine mesotocin receptors in the tammar wallaby.  (+info)

Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. (59/206)

Alcohol exposure during development can cause brain malformations and neurobehavioral abnormalities. In view of the teratogenicity of ethanol, identification of molecules that could counteract the neurotoxic effects of alcohol deserves high priority. Here, we report that pituitary adenylate cyclase-activating polypeptide (PACAP) can prevent the deleterious effect of ethanol on neuronal precursors. Exposure of cultured cerebellar granule cells to ethanol inhibited neurite outgrowth and provoked apoptotic cell death. Incubation of granule cells with PACAP prevented ethanol-induced apoptosis, and this effect was not mimicked by vasoactive intestinal polypeptide, suggesting that PAC1 receptors are involved in the neurotrophic activity of PACAP. Ethanol exposure induced a strong increase of caspase-2, -3, -6, -8, and -9 activities, DNA fragmentation, and mitochondrial permeability. Cotreatment of granule cells with PACAP provoked a significant inhibition of all of the apoptotic markers investigated although the neurotrophic activity of PACAP could only be ascribed to inhibition of caspase-3 and -6 activities. These data demonstrate that PACAP is a potent protective agent against ethanol-induced neuronal cell death. The fact that PACAP prevented ethanol toxicity even when added 2 h after alcohol exposure, suggests that selective PACAP agonists could have potential therapeutic value for the treatment of fetal alcohol syndrome.  (+info)

A potent and highly selective VPAC2 agonist enhances glucose-induced insulin release and glucose disposal: a potential therapy for type 2 diabetes. (60/206)

Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) activate two shared receptors, VPAC1 and VPAC2. Activation of VPAC1 has been implicated in elevating glucose output, whereas activation of VPAC2 may be involved in insulin secretion. A hypothesis that a VPAC2-selective agonist would enhance glucose disposal by stimulating insulin secretion without causing increased hepatic glucose production was tested using a novel selective agonist of VPAC2. This agonist, BAY 55-9837, was generated through site-directed mutagenesis based on sequence alignments of PACAP, VIP, and related analogs. The peptide bound to VPAC2 with a dissociation constant (K(d)) of 0.65 nmol/l and displayed >100-fold selectivity over VPAC1. BAY 55-9837 stimulated glucose-dependent insulin secretion in isolated rat and human pancreatic islets, increased insulin synthesis in purified rat islets, and caused a dose-dependent increase in plasma insulin levels in fasted rats, with a half-maximal stimulatory concentration of 3 pmol/kg. Continuous intravenous or subcutaneous infusion of the peptide reduced the glucose area under the curve following an intraperitoneal glucose tolerance test. The peptide had effects on intestinal water retention and mean arterial blood pressure in rats, but only at much higher doses. BAY 55-9837 may be a useful therapy for the treatment of type 2 diabetes.  (+info)

Transcription of the mouse PAC1 receptor gene: cell-specific expression and regulation by Zac1. (61/206)

Regulations of the PACAP type 1 (PAC1) receptor expression have been described in the brain and the anterior pituitary. To understand the molecular mechanisms underlying mouse PAC1 gene regulation, we first mapped its transcription start sites (tss). PAC1 receptor RNA initiates from two major sites in embryos and adult tissues. Functional analysis revealed a basal promoter within the first 180 bp upstream of transcription start. Negative regulatory sequences upstream of this minimal promoter control the cell type-specific transcription of a luciferase reporter gene. Zac1, a zinc finger protein mainly expressed in the brain and the pituitary gland, binds to a GC-rich motif of the promoter regulatory elements. The Zac1 DNA binding site is required to positive and negative regulations of the promoter. Our findings provide bases for future studies on the regulatory elements controlling PAC1 gene transcription and demonstrate the PAC1 receptor promoter as a target of Zac1.  (+info)

Transglutaminase-mediated polyamination of vasoactive intestinal peptide (VIP) Gln16 residue modulates VIP/PACAP receptor activity. (62/206)

Previous data showing an increase of receptor binding activity of [R16]VIP, a vasoactive intestinal peptide (VIP) structural analogue containing arginine at the position 16 of its amino acid sequence, have pointed out the importance of a positive charge at this site. Here, the functional characterization of three VIP polyaminated adducts (VIPDap, VIPSpd, and VIPSpm), obtained by a transglutaminase-catalysed reaction between the VIP Gln16 residue and 1,3-diaminopropane (Dap), spermidine (Spd), or spermine (Spm), is reported. Appropriate binding assays and adenylate cyclase enzymatic determinations have shown that these VIP adducts act as structural VIP agonists, both in vitro and in vivo. In particular, their IC50 and EC50 values of human and rat VIP/pituitary adenylate cyclase activating peptide (PACAP)1 and VIP/PACAP2 receptors indicate that VIPDap is a VIP agonist, with an affinity and a potency higher than that of VIP, while VIPSpd and VIPSpm are also agonists but with affinities lower than that of VIP. These findings suggest that the difference in adduct agonist activity reflects the differences in the positive charge and carbon chain length of the polyamine covalently linked with the VIP Gln16 residue. In addition, the data obtained strongly suggest that the length of polyamine carbon chain could be critical for the interaction of the agonist with its receptor, even though possible hydrophobic interaction cannot be ruled out. In vivo experiments on murine J774 macrophage cell cultures have shown the ability of these compounds to stimulate the inducible nitric oxide synthase activity at the transcriptional level.  (+info)

Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide inhibit dendritic growth in cultured sympathetic neurons. (63/206)

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are related neuropeptides that are released by the preganglionic sympathetic axons. These peptides have previously been implicated in the regulation of sympathetic neurotransmitter metabolism and cell survival in postganglionic sympathetic neurons. In this study we consider the possibility that PACAP and VIP also affect the morphological development of these neurons. Postganglionic rat sympathetic neurons formed extensive dendritic arbors after exposure to bone morphogenetic protein-7 (BMP-7) in vitro. PACAP and VIP reduced BMP-7-induced dendritic growth by approximately 70-90%, and this suppression was maintained for 3 weeks. However, neither PACAP nor VIP affected axonal growth or cell survival. The actions of PACAP and VIP appear to be mediated by PAC1 receptors because their effects were suppressed by an antagonist that binds to PAC1 and VPAC2 receptors (PACAP6-38), but not by an antagonist that binds to the VPAC1 and VPAC2 receptors. Moreover, exposure to PACAP and VIP caused phosphorylation and nuclear translocation of cAMP response element-binding protein, and agents that increase the intracellular concentration of cAMP mimicked the PACAP-induced inhibition of dendritic growth. These data suggest that peptides released by preganglionic nerves modulate dendritic growth in sympathetic neurons by a cAMP-dependent mechanism.  (+info)

Melanin-concentrating hormone activates signaling pathways in 3T3-L1 adipocytes. (64/206)

Energy homeostasis is regulated by peripheral signals, such as leptin, and by several orexigenic and anorectic neuropeptides. Recently, we reported that the orexigenic neuropeptide melanin-concentrating hormone (MCH) stimulates leptin production by rat adipocytes and that the MCH receptor (MCH-R1) is present on these cells. Here, we show that MCH-R1 is present on murine 3T3-L1 adipocytes. Treatment of 3T3-L1 adipocytes with 1 micromolar MCH for up to 2 h acutely downregulated MCH-R1, indicating a mechanism of ligand-induced receptor downregulation. Potential signaling pathways mediating MCH-R1 action in adipocytes were investigated. Treatment of 3T3-L1 adipocytes with 1 micromolar MCH rapidly induced a threefold and a fivefold increase in p44/42 MAPK and pp70 S6 kinase activities, respectively. In addition, 3T3-L1 adipocytes transiently transfected with a murine leptin-luciferase promoter construct showed a fourfold and a sixfold increase in leptin promoter-reporter gene expression at 1 h and 4 h, respectively, in response to MCH. Activity decreased to basal levels at 8 h. Furthermore, MCH-stimulated leptin promoter-driven luciferase activity was diminished in the presence of the MAP/ERK kinase inhibitor PD-98059 and in the presence of rapamycin, an inhibitor of pp70 S6 kinase activation. These results provide further evidence for a functional MCH signaling pathway in adipocytes.  (+info)