Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. (33/206)

Although neurogenesis in the embryo proceeds in a region- or lineage-specific fashion coincident with neuropeptide expression, a regulatory role for G protein-coupled receptors (GPCR) remains undefined. Pituitary adenylate cyclase activating polypeptide (PACAP) stimulates sympathetic neuroblast proliferation, whereas the peptide inhibits embryonic cortical precursor mitosis. Here, by using ectopic expression strategies, we show that the opposing mitogenic effects of PACAP are determined by expression of PACAP receptor splice isoforms and differential coupling to the phospholipase C (PLC) pathway, as opposed to differences in cellular context. In embryonic day 14 (E14) cortical precursors transfected with the hop receptor variant, but not cells transfected with the short variant, PACAP activates the PLC pathway, increasing intracellular calcium and eliciting translocation of protein kinase C. Ectopic expression of the hop variant in cortical neuroblasts transforms the antimitotic effect of PACAP into a promitogenic signal. Furthermore, PACAP promitogenic effects required PLC pathway function indicated by antagonist U-73122 studies in hop-transfected cortical cells and native sympathetic neuroblasts. These observations highlight the critical role of lineage-specific expression of GPCR variants in determining mitogenic signaling in neural precursors.  (+info)

Involvement of PACAP receptor in primary afferent fibre-evoked responses of ventral roots in the neonatal rat spinal cord. (34/206)

The role of PACAP receptor in nociceptive transmission was investigated in vitro using maxadilan, a PACAP receptor selective agonist and max.d.4, a PACAP receptor selective antagonist. Potentials, from a ventral root (L3 - L5) of an isolated spinal cord preparation or a spinal cord - saphenous nerve - skin preparation from 0 - 3-day-old rats, were recorded extracellularly. In the isolated spinal cord preparation, single shock stimulation of a dorsal root at C-fibre strength induced a slow depolarizing response lasting about 30 s (slow ventral root potential; slow VRP) in the ipsilateral ventral root of the same segment. Bath-application of max. d.4 (0.01 - 3 microM) inhibited the slow VRP in a concentration-dependent manner. In the spinal cord - saphenous nerve - skin preparation, application of capsaicin (0.1 microM) to the skin evoked a depolarization of the ventral root. This response was also depressed by max.d.4 (1 microM). Application of maxadilan evoked a long-lasting depolarization in a concentration-dependent manner in the spinal cord preparation. In the presence of max.d.4 (0.3 microM), the concentration response curve of maxadilan was shifted to the right. Reverse transcription-polymerase chain reaction (RT - PCR) experiments demonstrated the existence of PACAP receptor and VPAC(2) receptor in the neonatal rat spinal cord and [(125)I]-PACAP27 binding was displaced almost completely by maxadilan and max.d.4, but not by vasoactive intestinal peptide (VIP). These data indicate that PACAP receptor is dominantly distributed in the neonatal rat spinal cord. The present study suggests that PACAP receptor may play an excitatory role in nociceptive transmission in the neonatal rat spinal cord.  (+info)

Enhancement of MSH receptor- and GAL4-mediated gene transfer by switching the nuclear import pathway. (35/206)

Efficient nuclear delivery of plasmid DNA represents a major barrier in nonviral gene transfer. One approach has been to use DNA-binding proteins such as GAL4 from yeast as DNA carriers with nuclear targeting properties. We recently showed, however, that GAL4 is inefficient in targeting DNA to the nucleus because its DNA-binding and nuclear targeting activities are mutually exclusive, which relates to the fact that GAL4 nuclear import occurs via a novel pathway. Here, we 'switch' this pathway to a more conventional one by adding a modified poly-lysine to which an optimized nuclear targeting signal, based on that of the SV40 large T-antigen, is linked. We also use a chimeric GAL4-alpha-melanocyte stimulating hormone (MSH) fusion protein to enable gene transfer to cells expressing the MSH receptor. Switching the nuclear import pathway of the transfecting complex significantly enhances receptor-mediated gene transfer through enabling interaction with desired components of the cellular nuclear import machinery. The present study represents the first demonstration that nuclear targeting signals can enhance receptor-mediated gene delivery, the approaches having important relevance to research and clinical applications, such as in generating transgenic or knock-out animals, or in gene therapy.  (+info)

Enhancement of gene delivery by an analogue of alpha-MSH in a receptor-independent fashion. (36/206)

In order to transfect melanoma specifically by receptor-mediated endocytosis we prepared dioctadecyl aminoglycylspermine (lipospermine)--DNA complexes with [Nle(4),D-Phe(7)]-alpha-MSH(4--10), a pseudo-peptide analogue of alpha-melanocyte stimulating hormone (alpha-MSH) linked to a thiol-reactive phospholipid. With these complexes we obtained an up to 70-fold increase of transfection with B16-F1 melanoma cells. However when B16-G4F, an alpha-MSH receptor negative melanoma cell line was transfected, an up to 700-fold increased transfection efficiency was observed. The peptide hormone analogue was equally efficient when it was only mixed with lipospermine--DNA complexes without covalent coupling. In addition to melanoma cells we also obtained up to 30-fold increased transfection with BN cells (embryonic liver cells). Our data show that an alpha-MSH analogue increased transfection independently of the MSH receptor expression but reaches efficiencies approaching those obtained with peptides derived from viral fusion proteins. The absence of targeting of constructs containing [Nle(4),D-Phe(7)]-alpha-MSH(4-10) can probably be attributed due to the relatively modest number of MSH receptors at the surface of melanoma. We suggest, however, that the peptide hormone analogue used in this study has membrane-active properties and could be of interest as helper agent to enhance non-viral gene delivery presumably by endosomal-destabilizing properties.  (+info)

ADP-ribosylation factor-dependent phospholipase D activation by VPAC receptors and a PAC(1) receptor splice variant. (37/206)

The VPAC(1) and VPAC(2) receptors for vasoactive intestinal polypeptide and the PAC(1) receptor for pituitary adenylate cyclase-activating polypeptide are members of a subfamily of G protein-coupled receptors (GPCRs). We recently reported that phospholipase D (PLD) activation by members of the rhodopsin group of GPCRs occurs by at least two routes, one of which seems to involve the small G protein ADP-ribosylation factor (ARF) and its physical association with GPCRs. Here we report that rat VPAC and PAC(1) receptors can also stimulate PLD (albeit less potently than adenylate cyclase) in transfected cells and also in cells where they are natively expressed. PLD responses of the VPAC receptors and the hop1 spice variant of the PAC(1) receptor but not its null form are sensitive to brefeldin A (BFA), an inhibitor of GTP exchange at ARF. The presence of the hop1 cassette in the rat PAC(1) receptor facilitates PLD activation in the absence of marked changes in ligand binding, receptor internalization, and adenylate cyclase activation, with some reduction in phospholipase C activation. Both VPAC(2) and PAC(1-hop1) (but not PAC(1-null)) receptors were shown to associate with immunoprecipitates directed against native or epitope-tagged ARF. A chimeric construct of the VPAC(2) receptor body with intracellular loop 3 (i3) of the PAC(1-null) receptor mediated BFA-insensitive activation of PLD, whereas the response of the corresponding PAC(1-hop1) construct was BFA-sensitive. Motifs in i3 of the PAC(1-hop1) receptor may act as critical determinants of coupling to ARF-dependent PLD activation by contributing to the GPCR:ARF interface.  (+info)

Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. (38/206)

The neuropeptide pituitary adenylyl cyclase-activating peptide (PACAP) and one of its receptors (PAC(1)) are expressed in embryonic neural tube, where they appear to regulate neurogenesis and patterning. We now show that PAC(1) gene expression is also present in neonatal rats in the ventricular and subventricular zones and in the optic chiasm, areas that are rich in oligodendrocyte (OL) progenitors (OLP). Because actions of PACAP on OLP have not been reported, we examined the effects of PACAP on the proliferation of purified OLP in culture and on myelinogenesis in cerebellar slices. Northern analyses on total RNA from purified glial cell subtypes revealed an abundant 7 kb hybridizing transcript in OLP, which was confirmed to correspond to the PAC(1) receptor by reverse transcription-PCR. The presence of this receptor was also corroborated by radioligand binding and cAMP assay. In cultured OL, receptor density decreased during maturation but was partially counterbalanced by the appearance of sites that bound both PACAP and the related peptide vasoactive intestinal peptide. PACAP increased DNA synthesis in OLP cultures almost twofold and increased the bromodeoxyuridine-labeling index in O4-positive OLP. PACAP treatment also resulted in decreased sulfate incorporation into sulfatide in cultures of differentiating OL. The PACAP effect on sulfatide synthesis was fully reproduced in a cerebellar explant model. These findings indicate that PACAP may act at two stages during OL development to (1) stimulate proliferation and (2) delay maturation and/or myelinogenesis.  (+info)

[125I]-S36057: a new and highly potent radioligand for the melanin-concentrating hormone receptor. (39/206)

Shortened, more stable and weakly hydrophobic analogues of melanin-concentrating hormone (MCH) were searched as candidates for radioiodination. Starting from the dodecapeptide MCH(6 - 17), we found that: (1) substitution of Tyr(13) by a Phe residue; (2) addition of a 3-iodo-Tyr residue at the N-terminus; and (3) addition of a hydrophilic spacer 8-amino-3,6-dioxyoctanoyl between the 3-iodo-Tyr and MCH(6 - 17) (compound S36057), led to an agonist more potent than MCH itself in stimulating [35S]-GTPgammaS binding at membranes from HEK293 cells stably expressing the human MCH receptor. Specific binding of [125I]-S36057 was found in HEK293 and CHO cell lines stably expressing the human MCH receptor. This radioligand recognized a similar number of binding sites (ca. 800 fmol mg(-1)) than [125I]-[3-iodo Tyr(13)]-MCH. However, the K(D) for [125I]-S36057 obtained from saturation studies (0.037 nM) or from binding kinetics (0.046 nM) was at least 10 fold higher to that of [125I]-[3-iodo Tyr(13)]-MCH (0.46 nM). Affinities determined for a series of MCH analogues were similar with both radioligands, S36057 being the most potent compound tested (K(i)=0.053 nM). Finally, [125I]-S36057 also potently labelled the MCH receptor in membranes from whole rat brain (K(D) 0.044 nM, B(max)=11 fmol mg(-1)). In conclusion, [125I]-S36057 is a more potent and more stable radioligand than [125I]-[3-iodo Tyr(13)]-MCH that will represent a reliable tool for binding assays in the search of novel MCH ligands. It should also provide great help for autoradiographic studies of the MCH receptor distribution in the central nervous system.  (+info)

Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. (40/206)

Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive G(alpha)q coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2-16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.  (+info)