(1/1759) Interleukin-8 receptor modulates IgE production and B-cell expansion and trafficking in allergen-induced pulmonary inflammation.

We examined the role of the interleukin-8 (IL-8) receptor in a murine model of allergen-induced pulmonary inflammation using mice with a targeted deletion of the murine IL-8 receptor homologue (IL-8r-/-). Wild-type (Wt) and IL-8r-/- mice were systemically immunized to ovalbumin (OVA) and were exposed with either single or multiple challenge of aerosolized phosphate-buffered saline (OVA/PBS) or OVA (OVA/OVA). Analysis of cells recovered from bronchoalveolar lavage (BAL) revealed a diminished recruitment of neutrophils to the airway lumen after single challenge in IL-8r-/- mice compared with Wt mice, whereas multiply challenged IL-8r-/- mice had increased B cells and fewer neutrophils compared with Wt mice. Both Wt and IL-8r-/- OVA/OVA mice recruited similar numbers of eosinophils to the BAL fluid and exhibited comparable degrees of pulmonary inflammation histologically. Both total and OVA-specific IgE levels were greater in multiply challenged IL-8r-/- OVA/OVA mice than in Wt mice. Both the IL-8r-/- OVA/OVA and OVA/PBS mice were significantly less responsive to methacholine than their respective Wt groups, but both Wt and IL-8r mice showed similar degrees of enhancement after multiple allergen challenge. The data demonstrate that the IL-8r modulates IgE production, airway responsiveness, and the composition of the cells (B cells and neutrophils) recruited to the airway lumen in response to antigen.  (+info)

(2/1759) Identification of three distinct receptor binding sites of murine interleukin-11.

Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. A complex of IL-11 and the IL-11 receptor (IL-11R) has been shown to interact with gp130, with high affinity, and to induce gp130- dependent signaling. In this study, we have identified residues crucial for the binding of murine IL-11 (mIL-11) to both the IL-11R and gp130 by examining the activities of mIL-11 mutants in receptor binding and cell proliferation assays. The location of these residues, as predicted from structural studies and a model of IL-11, reveals that mIL-11 has three distinct receptor binding sites. These are structurally and functionally analogous to the previously defined receptor binding sites I, II, and III of interleukin-6 (IL-6). This supports the hypothesis that IL-11 signals via the formation of a hexameric receptor complex and indicates that site III is a generic feature of cytokines that signal via association with gp130.  (+info)

(3/1759) Interleukin-12 is synthesized by mesangial cells and stimulates platelet-activating factor synthesis, cytoskeletal reorganization, and cell shape change.

Preliminary studies indicate the involvement of interleukin (IL)-12 in experimental renal pathology. In the present study, we evaluated whether cultured glomerular mesangial cells are able to produce IL-12 and whether IL-12 may regulate some of their functions, including the cytoskeletal reorganization, the change in cell shape, and the production of platelet-activating factor (PAF). The results obtained indicate that pro-inflammatory stimuli, such as tumor necrosis factor-alpha and bacterial polysaccharides, induce the expression of IL-12 mRNA and the synthesis of the protein by cultured mesangial cells. Moreover, cultured mesangial cells were shown to bind IL-12 and to express the human low-affinity IL-12 beta1-chain receptor. When challenged with IL-12, mesangial cells produced PAF in a dose- and time-dependent manner and superoxide anions. No production of tumor necrosis factor-alpha and IL-8 was observed. Moreover, we demonstrate that IL-12 induced a delayed and sustained shape change of mesangial cells that reached its maximum between 90 and 120 minutes of incubation. The changes in cell shape occurred concomitantly with cytoskeletal rearrangements and may be consistent with cell contraction. As IL-12-dependent shape change of mesangial cells was concomitant with the synthesis of PAF, which is known to promote mesangial cell contraction, we investigated the role of PAF using two chemically different PAF receptor antagonists. Both antagonists inhibited almost completely the cell shape change induced by IL-12, whereas they were ineffective on angiotensin-II-induced cell shape change. In conclusion, our results suggest that mesangial cells can either produce IL-12 or be stimulated by this cytokine to synthesize PAF and to undergo shape changes compatible with cell contraction.  (+info)

(4/1759) Regulation of interleukin (IL)-12 receptor beta2 subunit expression by endogenous IL-12: a critical step in the differentiation of pathogenic autoreactive T cells.

The interleukin (IL)-12 receptor (R)beta2 subunit is the critical molecule involved in maintaining IL-12 responsiveness and controlling T helper cell type 1 lineage commitment. We demonstrate that IL-12 and interferon (IFN)-gamma play separate, but complementary, roles in regulating IL-12Rbeta2 expression on antigen-specific CD4(+) T cells. These results are consistent with our previous observation that IL-12 can promote autoimmune disease through IFN-gamma-independent as well as -dependent pathways. Therefore, we compared the induction of IL-12 by, and the expression of the IL-12Rbeta2 subunit on, myelin basic protein (MBP)-specific T cells from experimental allergic encephalomyelitis (EAE)-susceptible SJL (H-2(s)) mice and from EAE- resistant B10.S mice (H-2(s)). B10.S mice had an antigen-specific defect in their capacity to upregulate the IL-12Rbeta2 subunit. Defective expression was not secondary to the production of suppressive cytokines, but to a failure of B10.S MBP-specific T cells to upregulate CD40 ligand expression and to induce the production of IL-12. IL-12Rbeta2 expression as well as encephalitogenicity of these cells could be restored by the addition of IL-12. These results suggest that the development of immunotherapies that target the IL-12Rbeta2 subunit may be useful for the treatment of autoimmune diseases.  (+info)

(5/1759) Comparative genomic analysis of the interferon/interleukin-10 receptor gene cluster.

Interferons and interleukin-10 are involved in key aspects of the host defence mechanisms. Human chromosome 21 harbors the interferon/interleukin-10 receptor gene cluster linked to the GART gene. This cluster includes both components of the interferon alpha/beta-receptor (IFNAR1 and IFNAR2) and the second components of the interferon gamma-receptor (IFNGR2) and of the IL-10 receptor (IL10R2). We report here the complete gene content of this GART-cytokine receptor gene cluster and the use of comparative genomic analysis to identify chicken IFNAR1, IFNAR2, and IL10R2. We show that the large-scale structure of this locus is conserved in human and chicken but not in the pufferfish Fugu rubripes. This establishes that the receptor components of these host defense mechanisms were fixed in an ancestor of the amniotes. The extraordinary diversification of the interferon ligand family during the evolution of birds and mammals has therefore occurred in the context of a fixed receptor structure.  (+info)

(6/1759) A functional granulocyte colony-stimulating factor receptor is required for normal chemoattractant-induced neutrophil activation.

Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor that is widely used to treat neutropenia. In addition to stimulating polymorphonuclear neutrophil (PMN) production, G-CSF may have significant effects on PMN function. Because G-CSF receptor (G-CSFR)-deficient mice do not have the expected neutrophilia after administration of human interleukin-8 (IL-8), we examined the effect of the loss of G-CSFR on IL-8-stimulated PMN function. Compared with wild-type PMNs, PMNs isolated from G-CSFR-deficient mice demonstrated markedly decreased chemotaxis to IL-8. PMN emigration into the skin of G-CSFR-deficient mice in response to IL-8 was also impaired. Significant chemotaxis defects were also seen in response to N-formyl-methionyl-leucyl-phenylalanine, zymosan-activated serum, or macrophage inflammatory protein-2. The defective chemotactic response to IL-8 does not appear to be due to impaired chemoattractant receptor function, as the number of IL-8 receptors and chemoattractant-induced calcium influx, actin polymerization, and release of gelatinase B were comparable to those of wild-type PMNs. Chemoattractant-induced adhesion of G-CSFR-deficient PMNs was significantly impaired, suggesting a defect in beta2-integrin activation. Collectively, these data demonstrate that selective defects in PMN activation are present in G-CSFR-deficient mice and indicate that G-CSF plays an important role in regulating PMN chemokine responsiveness.  (+info)

(7/1759) A cell type-specific constitutive point mutant of the common beta-subunit of the human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 receptors requires the GM-CSF receptor alpha-subunit for activation.

The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMRalpha) and a common signal-transducing beta-subunit (hbetac) that is shared with the interleukin-3 and -5 receptors. We have previously identified a constitutively active extracellular point mutant of hbetac, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287). This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMRalpha (mGMRalpha) subunit, since introduction of mGMRalpha, but not hGMRalpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence. Experiments utilizing mouse/human chimeric GMRalpha subunits indicated that the species specificity lies in the extracellular domain of GMRalpha. Importantly, the requirement for mGMRalpha correlated with the ability of I374N (but not wild-type hbetac) to constitutively associate with mGMRalpha. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMRalpha surface expression. Taken together, these findings suggest a critical role for association with GMRalpha in the constitutive activity of I374N.  (+info)

(8/1759) Regulation of IL-8RA (CXCR1) expression in polymorphonuclear leukocytes by hypoxia/reoxygenation.

Interleukin-8 (IL-8) is an important mediator of neutrophil (PMN) function and the type A IL-8 receptor (IL-8RA) mediates these pro-inflammatory signals. Hypoxia or hypoxia/reoxygenation (H/R) affects the production of IL-8, but no data is available regarding its effect on IL-8RA expression. The purpose of this study was to determine the effects of hypoxia and/or H/R on the expression of IL-8RA in PMN. We demonstrated that IL-8RA mRNA levels were similar under normoxic and hypoxic conditions but H/R resulted in a significant reduction in mRNA expression between 30 and 60 min. IL-8RA protein also decreased with reoxygenation of whole blood, which was altered by the addition of specific antioxidants. Therefore, H/R appears to attenuate the effect of IL-8 by down-regulating IL-8RA in PMN. These data show that changes in oxygen tension within the wound site not only affect the expression of inflammatory cytokines, but also control their actions by regulating their receptors.  (+info)