Modulation of immunoglobulin (Ig)E-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG. (41/3171)

It is widely accepted that immunoglobulin (Ig)E triggers immediate hypersensitivity responses by activating a cognate high-affinity receptor, FcepsilonRI, leading to mast cell degranulation with release of vasoactive and proinflammatory mediators. This apparent specificity, however, is complicated by the ability of IgE to bind with low affinity to Fc receptors for IgG, FcgammaRII and III. We have addressed the in vivo significance of this interaction by studying IgE-mediated passive systemic anaphylaxis in FcgammaR-deficient mice. Mice deficient in the inhibitory receptor for IgG, FcgammaRIIB, display enhanced IgE-mediated anaphylactic responses, whereas mice deficient in an IgG activation receptor, FcgammaRIII, display a corresponding attenuation of IgE-mediated responses. Thus, in addition to modulating IgG-triggered hypersensitivity responses, FcgammaRII and III on mast cells are potent regulators of IgE-mediated responses and reveal the existence of a regulatory pathway for IgE triggering of effector cells through IgG Fc receptors that could contribute to the etiology of the atopic response.  (+info)

Systemic suppression of human peripheral blood phagocytic leukocytes after whole-body UVB irradiation. (42/3171)

We examined systemic effects of whole-body UVB irradiation on human peripheral blood phagocytes. We found that 24 h after a single erythemal dose of UVB radiation two phagocyte functions, adhesion and phagocytosis, were reduced by 50%. This functional suppression was accompanied by a significant decrease in the expression of complement receptors (CR1 and CR3) and IgG Fc receptors (FcRII and FcRIII). The greatest reduction (47%) was observed in CR3, which is important for both adhesion and phagocytosis. A kinetic analysis showed that both CR1 and CR3 levels started to decrease 15 min after the UVB exposure, reaching the lowest levels at 4.5- and 24-h time points, respectively. The down-modulation of CRs after whole-body UVB exposure was not due to a defective receptor synthesis or translocation from internal stores to plasma membrane because the maximal CR levels in stimulated cells were not affected by UVB. No change in the serum soluble ICAM-1 was detected after UVB, which rules out CD1 1b epitope masking by sICAM-1. UVB did not release low-receptor-density myeloid progenitor cells from storage pools into circulation. Interleukin 10, a mediator of UVB-induced immunosuppression, was unable to modulate CR expression in vitro. When seven suberythemal whole-body UVB exposures were given repeatedly within 2 weeks, a significant decrease in CR expression was seen, which was greatest after three irradiations. Our data suggest that an exposure to UVB has systemic effects in humans which, possibly due to the down-modulation of preexisting cell-surface receptors, suppress some important functions of circulating phagocytic cells.  (+info)

Human platelets exclusively bind oxidized low density lipoprotein showing no specificity for acetylated low density lipoprotein. (43/3171)

The widely studied macrophage scavenger receptor system is known to bind both acetylated low density lipoprotein and oxidized low density lipoprotein. Although only the latter ligand has been shown to occur in vivo, acetylated low density lipoprotein is often used to evaluate the contribution of scavenger receptors to different (patho)physiologic processes, assuming that all existing subtypes of scavenger receptors recognise both lipoproteins. In the present work, we identify human platelets as the first natural cell type to bind oxidized low density lipoprotein without showing specificity for acetylated low density lipoprotein. Consequently, platelets possess exclusive receptor(s) for oxidized low density lipoprotein distinct from the 'classical' scavenger receptor AI/AII. From the data presented in this work, we conclude that the class B scavenger receptor CD36 (GPIV) is responsible for this exclusive oxidized low density lipoprotein binding.  (+info)

Functional differentiation signals mediated by distinct regions of the cytoplasmic domain of the granulocyte colony-stimulating factor receptor. (44/3171)

Granulocyte colony-stimulating factor receptor (G-CSFR) regulates the proliferation and differentiation of neutrophilic progenitor cells through interaction with its cytokine. Exposure of WEHI-3B D+ myelomonocytic leukemia and myeloid LGM-1 cells overexpressing the G-CSFR to G-CSF resulted in induction of differentiation as measured by (1) the ability to reduce nitroblue tetrazolium (NBT), (2) the expression of Mac-I antigen, and (3) the expression of FcgammaII/III receptor. Mutational analyses indicated that distinct regions of the cytoplasmic domain were critical for efficient induction of each functional marker. The membrane proximal region containing homology sequences of boxes 1 and 2 was important for the activation of all three functional markers of mature neutrophils. Induction of the capacities to express Mac-I antigen or FcgammaII/III receptor also required additional sequences in the membrane proximal region between amino acids 70 and 100 and may be dependent on the phosphorylation of Tyr703. The findings suggest that distinct sequences within the amino-terminal region of the cytoplasmic domain of the receptor are sufficient to induce these functional markers of differentiation, and receptor tyrosine phosphorylation may be necessary.  (+info)

The SH2-containing 5'-inositol phosphatase (SHIP) is tyrosine phosphorylated after Fc gamma receptor clustering in monocytes. (45/3171)

Current models of Fc gamma R signal transduction in monocytes describe a molecular cascade that begins upon clustering of Fc gamma R with the phosphorylation of critical tyrosine residues in the cytoplasmic domains of Fc gamma RIIa or the gamma-chain subunit of Fc gamma RI and Fc gamma RIIIa. The cascade engages several other tyrosine-phosphorylated molecules, either enzymes or adapters, to manifest ultimately an array of biological responses, including phagocytosis, cell killing, secretion of a variety of inflammatory mediators, and activation. Continuing to assess systematically the molecules participating in the cascade, we have found that the SH2-containing 5'-inositol phosphatase (SHIP) is phosphorylated on tyrosine early and transiently after Fc gamma R clustering. This molecule in other systems, such as B cells and mast cells, mediates an inhibitory signal. We find that clustering of either Fc gamma RIIa or Fc gamma RI is effective in inducing SHIP phosphorylation, that SHIP binds in vitro to a phosphorylated immunoreceptor tyrosine-based activation motif, peptide from the cytoplasmic domain of Fc gamma RIIa in activation-independent fashion, although SHIP binding increases upon cell activation, and that Fc gamma RIIb and Fc gamma RIIc are not responsible for the observed SHIP phosphorylation. These findings prompt us to propose that SHIP inhibits Fc gamma R-mediated signal transduction by engaging immunoreceptor tyrosine-based activation motif-containing cytoplasmic domains of Fc gamma RIIa and Fc gamma RI-associated gamma-chain.  (+info)

Does IgE bind to and activate eosinophils from patients with allergy? (46/3171)

Human eosinophils have been reported to express both the mRNA and protein for the high affinity IgE receptor (FcepsilonRI); it is speculated that this receptor plays a role in eosinophil mediator release in allergic diseases. However, questions still remain. How much of the FcepsilonRI protein is actually expressed on the cell surface of the eosinophil? If they are present, are these IgE receptors associated with effector functions of eosinophils? To address these issues, we studied blood eosinophils from patients with ragweed hay fever. A high level of low affinity IgG receptor (FcgammaRII, CD32), but no expression of FcepsilonRI, was detectable on the eosinophil surface by standard FACS analysis. However, after in vitro sensitization with biotinylated chimeric IgE (cIgE), cell-bound cIgE was detected by PE-conjugated streptavidin. This cIgE binding was partially inhibited by anti-FcepsilonRI mAb, suggesting that eosinophils do express minimal amounts of FcepsilonRI detectable only by a sensitive method. Indeed, FACS analysis of whole blood showed that eosinophils express approximately 0.5% of the FcepsilonRI that basophils express. When stimulated with human IgE or anti-human IgE, these eosinophils did not exert effector functions; there was neither production of leukotriene C4 or superoxide anion nor any detectable degranulation response. In contrast, eosinophils possessed membrane-bound human IgG and showed functional responses when stimulated with human IgG or anti-human IgG. Thus, IgG and/or cytokines, such as IL-5, appear to be more important for eosinophil activation in allergic diseases than IgE.  (+info)

Dynamics of immunoglobulins at the feto-maternal interface. (47/3171)

Transplacental transport of maternal immunoglobulin G (IgG) to the developing fetus is extremely important in the protection of the newborn from infection. Although the exact mechanisms of the selective and active transfer of IgG across the placental barrier are not fully understood, receptors for the Fc part of IgG (FcgammaRs) in the placenta are believed to play a key role. Several known Fc receptors, FcgammaRI, FcgammaRII, FcgammaRIII and FcRn (neonatal FcR), demonstrate heterogeneous expression patterns in placenta. Immunohistochemical analysis shows the expression of FcgammaRI on Hofbauer cells in stromal tissue, FcbetaRII on Hofbauer cells and fetal blood endothelium, FcgammaRIII on Hofbauer cells and trophoblasts, and FcRn on syncytiotrophoblasts and endothelial cells. Recent studies provide evidence for important associations among these receptors and transcytosis of IgG, as well as scavenger mechanisms for clearing immune complexes in the placenta during pregnancy.  (+info)

Reactive oxygen intermediates enhance Fc gamma receptor signaling and amplify phagocytic capacity. (48/3171)

Receptors for the Fc region of IgG (Fc gamma R) mediate internalization of opsonized particles by human neutrophils (PMN) and mononuclear phagocytes. Cross-linking of Fc gamma R leads to activation of protein tyrosine kinases and phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) within Fc gamma R subunits, both obligatory early signals for phagocytosis. Human PMN constitutively express two structurally distinct Fc gamma R, Fc gamma RIIa and Fc gamma RIIIb, and can be induced to express Fc gamma RI by IFN-gamma. We have previously shown that stimulation of PMN through Fc gamma RIIIb results in enhanced Fc gamma RIIa-mediated phagocytic activity that is inhibited by catalase. In the present study, we have tested the hypothesis that reactive oxygen intermediates (ROI) have the capacity to regulate Fc gamma R responses and defined a mechanism for this effect. We show that H2O2 augmented phagocytosis mediated by Fc gamma RIIa and Fc gamma RI in PMN and amplified receptor-triggered tyrosine phosphorylation of Fc gamma R-associated ITAMs and signaling elements. Generation of endogenous oxidants in PMN by cross-linking Fc gamma RIIIb similarly enhanced phosphorylation of Fc gamma RIIa and Syk, a tyrosine kinase required for phagocytic function, in a catalase-sensitive manner. Our results provide a mechanism for priming phagocytes for enhanced responses to receptor-driven effects. ROI generated in an inflammatory milieu may stimulate quiescent cells to rapidly increase the magnitude of their effector function. Indeed, human monocytes incubated in the presence of stimulated PMN showed oxidant-induced increases in Fc gamma RIIa-mediated phagocytosis. Definition of the role of oxidants as amplifiers of Fc gamma R signaling identifies a target for therapeutic intervention in immune complex-mediated tissue injury.  (+info)