Formation of transformed endothelial cells in the absence of VEGFR-2/Flk-1 by Polyoma middle T oncogene. (65/1541)

The middle T antigen of murine Polyomavirus (PymT) rapidly transforms endothelial cells leading to vascular malformations reminiscent of endothelial tumors or hemangiomas. Flk-1, a receptor tyrosine kinase which is activated upon binding of its ligand VEGF, is predominantly expressed in endothelial cells and essential for the formation of blood vessels since absence of Flk-1 prevents the development of mature endothelial cells in mice and in ES-cell differentiation experiments. To investigate the role of Flk-1 in PymT-induced vascular tumor formation, we studied the expression of Flk-1 and VEGF in PymT-transformed endothelial cells (Endothelioma cells, END. cells). The receptor and its ligand were both expressed in END. cells suggesting that a VEGF/Flk-1 autocrine loop might be causally involved in the formation of vascular tumors. To test this hypothesis, ES cells lacking Flk-1 were generated and the transforming potential of PymT was analysed after in vitro differentiation. Flk-1(-/-) END. cell lines were established which are morphologically identical to flk-1(+/+) END. cells and which express several markers characteristic for endothelial cells. This result suggests that PymT functionally replaces the requirement of Flk-1 in expansion and/or survival of endothelial progenitor cells. Therefore, flk-1(-/-) END. cells provide a powerful tool to dissect the downstream signaling pathways of Flk-1.  (+info)

Vascular endothelial growth factor-induced endothelial cell migration and proliferation depend on a nitric oxide-mediated decrease in protein kinase Cdelta activity. (66/1541)

Vascular endothelial growth factor (VEGF) promotes angiogenesis and endothelial cell (EC) migration and proliferation by affecting intracellular mediators, only some of which are known, distal to its receptors. Protein kinase C (PKC) participates in the function of VEGF, but the role of individual PKC isoenzymes is unknown. In this study, we tested the importance of the activity of specific PKC isoenzymes in human EC migration and proliferation in response to VEGF. PKCdelta specific activity was depressed by the addition of VEGF (by 41+/-8% [P<0.05] at 24 hours) in human umbilical vein ECs (HUVECs) and in a HUVEC-derived EC line, ECV, without changing the total amount of either protein or mRNA encoding PKCdelta. Neither basic fibroblast growth factor (FGF-2) nor serum altered PKCdelta specific activity. The VEGF-induced decrease of PKCdelta activity, which began at 8 hours after stimulation, was strongly blocked by pretreatment with the nitric oxide (NO) synthase inhibitor N(G)-monomethyl-L-arginine in HUVECs; NO release peaked within 2 hours after stimulation. An exogenous NO donor, sodium nitroprusside, also decreased PKCdelta activity. The inhibition by N(G)-monomethyl-L-arginine of VEGF-induced HUVEC migration and proliferation, but not that induced by FGF-2 or serum, suggested that the decrease in PKCdelta via NO pathway is required for VEGF-induced EC migration and proliferation. Overexpression of PKCdelta in ECV cells specifically prevented EC response to VEGF but not to FGF-2 or serum. Thus, we conclude that suppression of PKCdelta activity via a NO synthase mechanism is required for VEGF-induced EC migration and proliferation, but not for that induced by FGF-2 or serum.  (+info)

Constitutive expression of VEGF, VEGFR-1, and VEGFR-2 in normal eyes. (67/1541)

PURPOSE: The expression of vascular endothelial growth factor (VEGF) and its high-affinity receptors VEGFR-1 and VEGFR-2 was investigated in normal eyes. METHODS: Monkey and rat eyes were surgically removed in animals under deep anesthesia and immediately prepared for study. Ocular VEGF, VEGFR-1, and VEGFR-2 expression was studied using a combination of in situ hybridization, northern blot analysis, immunohistochemistry, immunoassay, and reverse transcription-polymerase chain reaction. RESULTS: Steady state VEGF mRNA levels were detected in the normal vascularized ocular tissues of the monkey: the conjunctiva, iris, retina, and the choroid-retinal pigment epithelial complex. VEGF121 and VEGF165 were the major isoforms identified. VEGF protein was detected in the conjunctiva, retina, and the choroid-retinal pigment epithelial complex. Retinal VEGF mRNA localized to the ganglion, inner nuclear, and retinal pigment epithelial cell layers. VEGF protein localized to these same layers and to the cones of monkey retina. VEGFR-1 and VEGFR-2 mRNAs were detected in normal monkey iris, retina, and the choroid-retinal pigment epithelial complex. In both monkey and rat eyes, VEGFR-1 and VEGFR-2 mRNAs were localized to the inner nuclear layer of the retina. CONCLUSIONS: VEGF, VEGFR-1, and VEGFR-2 are constitutively expressed in the vascularized tissues of normal eyes.  (+info)

17 Beta-estradiol increases VEGF receptor-2 and promotes DNA synthesis in retinal microvascular endothelial cells. (68/1541)

PURPOSE: Estrogen is known to promote angiogenesis in gonads. The presence of estrogen receptors in the vascular endothelium of organs other than gonads has been reported. The goal of this study was to determine whether estrogen promotes the proliferation of retinal microvascular endothelial cells and to explore the mechanism of it. METHODS: DNA was quantitated using primary cultures of bovine retinal endothelial cells that were incubated with different doses of 17 beta-estradiol (E2), VEGF, or both. The changes in expression level of VEGF and VEGF receptor-2 (VEGFR2) were measured using northern blot analysis after treatment with E2. The presence of estrogen receptors in the endothelial cells was studied by immunohistochemistry and western blot analysis. RESULTS: 17 Beta-estradiol (E2) increased the DNA level in bovine retinal capillary endothelial cells (BRECs) by 177% at 1 nM (P < 0.05) and 150% at 10 nM (P < 0.05) by comparison with unstimulated BREC. One hundred nanomole tamoxifen completely blocked the E2-induced DNA synthesis in BRECs. Ten nanomole E2 augmented vascular endothelial growth factor (VEGF)-induced DNA synthesis in BRECs significantly (160%, P < 0.01). Ten nanomole E2 also increased VEGF mRNA expression, which peaked after 24 hours (6.7 times, P < 0.05), and VEGF receptor-2 (VEGFR2) mRNA expression, which peaked after 9 hours (2.4 times, P < 0.05). The mRNA expression level of VEGFR2 peaked with 10 nM E2 (P < 0.05) and that of VEGF reached maximum with 1 nM E2 (15 times, P < 0.001). VEGFR2 and VEGF proteins increased in parallel with their mRNA levels. Immunocytochemistry showed estrogen receptor expression in BRECs, and western blot analysis indicated the presence of a 67-kDa protein that was compatible with the estrogen receptor. CONCLUSIONS: These findings suggest that E2 may stimulate BREC growth by the receptor-mediated pathway and that E2 may augment the VEGF-dependent angiogenesis partly through the upregulation of VEGFR2.  (+info)

Endothelial growth factor receptors in human fetal heart. (69/1541)

BACKGROUND: Endothelial receptor tyrosine kinases include 3 members of the vascular endothelial growth factor receptor (VEGFR) family and 2 members of the angiopoietin receptor (Tie) family. In addition, the VEGF(165) isoform binds to neuropilin-1 (NP-1), a receptor for collapsins/semaphorins. The importance of these receptors for vasculogenesis and angiogenesis has been shown in gene-targeted mice, but so far, little is known about their exact expression patterns in the human vasculature. METHODS AND RESULTS: Frozen sections of human fetal heart were stained immunohistochemically with receptor-specific monoclonal (VEGFR, Tie) or polyclonal (NP-1) antibodies. The following patterns were observed: The endocardium was positive for VEGFR-1, VEGFR-2, NP-1, Tie-1, and Tie-2 but negative for VEGFR-3. The coronary vessels were positive for Tie-1, Tie-2, VEGFR-1, and NP-1 and negative for VEGFR-2 and VEGFR-3. Myocardial capillaries and epicardial blood vessels stained for VEGFR-1, VEGFR-2, NP-1, and Tie-1; myocardial capillaries and epicardial veins weakly for Tie-2; and epicardial lymphatic vessels for VEGFR-2 and VEGFR-3, weakly for Tie-1 and Tie-2, but not for VEGFR-1 or NP-1. CONCLUSIONS: The results demonstrate differential expression of the endothelial growth factor receptors in distinct types of vessels in the human heart. This information is useful for the understanding of their roles in physiological and pathological processes and for their diagnostic and therapeutic application in cardiovascular medicine.  (+info)

On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. (70/1541)

Many of the cellular actions of thrombin may contribute to the angiogenesis-promoting effect of thrombin reported previously. In this study, we investigated the interaction between thrombin and vascular endothelial growth factor (VEGF), the specific endothelial cell mitogen and key angiogenic factor. Exposure of human umbilical vein endothelial cells to thrombin sensitizes these cells to the mitogenic activity of VEGF. This thrombin-mediated effect is specific, dose-dependent and requires the activated thrombin receptor. Quantitative reverse transcription- polymerase chain reaction analysis reveals a time- and dose-dependent up-regulation of mRNA for VEGF receptors (KDR and flt-1). Optimal thrombin concentration for maximal expression of mRNA for KDR is 1.5 IU/ml (170% over controls) and appears 8-12 h after thrombin stimulation. Nuclear run-on experiments demonstrate that the up-regulation of KDR mRNA by thrombin occurred at the transcriptional level. In addition, functional protein of KDR receptor is increased to about 200% over control after 12 h of thrombin treatment. The up-regulation of KDR and flt-1 mRNA is also mimicked by the thrombin receptor activating peptide. These findings could explain at least in part the potent angiogenic action of thrombin.  (+info)

A role for the homeobox gene Xvex-1 as part of the BMP-4 ventral signaling pathway. (71/1541)

BMP-4 is believed to play a central role in the patterning of the mesoderm by providing a strong ventral signal. As part of this ventral patterning signal, BMP-4 has to activate a number of transcription factors to fulfill this role. Among the transcription factors regulated by BMP-4 are the Xvent and the GATA genes. A novel homeobox gene has been isolated termed Xvex-1 which represents a new class of homeobox genes. Transcription of Xvex-1 initiates soon after the midblastula transition. Xvex-1 transcripts undergo spatial restriction from the onset of gastrulation to the ventral marginal zone, and the transcripts will remain in this localization including at the tailbud stage in the proctodeum. Expression of Xvex-1 during gastrula stages requires normal BMP-4 activity as evidenced from the injection of BMP-4, Smad1, Smad5 and Smad6 mRNA and antisense BMP-4 RNA. Xvex-1 overexpression ventralizes the Xenopus embryo in a dose dependent manner. Partial loss of Xvex-1 activity induced by antisense RNA injection results in the dorsalization of embryos and the induction of secondary axis formation. Xvex-1 can rescue the effects of overexpressing the dominant negative BMP receptor. These results place Xvex-1 downstream of BMP-4 during gastrulation and suggest that it represents a novel homeobox family in Xenopus which is part of the ventral signaling pathway.  (+info)

c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. (72/1541)

c-fos-induced growth factor/vascular endothelial growth factor D (Figf/Vegf-D) is a secreted factor of the VEGF family that binds to the vessel and lymphatic receptors VEGFR-2 and VEGFR-3. Here we report that Figf/Vegf-D is a potent angiogenic factor in rabbit cornea in vivo in a dose-dependent manner. In vitro Figf/Vegf-D induces tyrosine phosphorylation of VEGFR-2 and VEGFR-3 in primary human umbilical cord vein endothelial cells (HUVECs) and in an immortal cell line derived from Kaposi's sarcoma lesion (KS-IMM). The treatment of HUVECs with Figf/Vegf-D induces dose-dependent cell growth. Figf/VEGF-D also induces HUVEC elongation and branching to form an extensive network of capillary-like cords in three-dimensional matrix. In KS-IMM cells Figf/Vegf-D treatment results in dose-dependent mitogenic and motogenic activities. Taken together with the previous observations that Figf/Vegf-D expression is under the control of the nuclear oncogene c-fos, our data uncover a link between a nuclear oncogene and angiogenesis, suggesting that Figf/Vegf-D may play a critical role in tumor cell growth and invasion.  (+info)