Annexins VII and XI are present in a human macrophage-like cell line. Differential translocation on FcR-mediated phagocytosis. (33/2162)

We have studied the divalent cation-dependent association of proteins to subcellular fractions of human macrophage-like cells before and after FcR-mediated phagocytosis. Among these proteins we have identified annexins VII and XI for the first time in these cells, along with annexins I, III, and VI. Although all of these annexins are present in the cytosolic fraction, the extent of their association to membrane and phagosome fractions from resting and stimulated cells is variable. Annexin VII translocates from cytosolic to membrane fractions after phagocytic stimulation, along with annexin I, III, and VI. Annexins VII and XI are found associated with purified phagosomes along with I, III, and VI, and this association is greater after a 24-h chase period. Our results show differences in the intracellular distribution of different annexins in macrophage-like cells on phagocytosis. Annexins VII, VI, III, and I respond to particle ingestion by translocating to phagosomes and other cell membrane structures, whereas annexin XI translocates predominantly to phagosomes, suggesting dissimilarities in their function.  (+info)

Antitumor immune effector mechanisms recruited by phage display-derived fully human IgG1 and IgA1 monoclonal antibodies. (34/2162)

We have constructed a recombinant, fully human IgA1 monoclonal antibody, UBS-54/IgA1, against the tumor-associated Ep-CAM molecule and compared its tumor-killing capacity with its IgG1 counterpart in in vitro assays. The data show that phage display-derived fully human IgA1 antibodies efficiently recruit immune effector cells that express the Fc receptor for IgA, FcalphaRI (CD89). UBS-54/IgA1-mediated killing of tumor cells by isolated polymorphonuclear cells (PMNs) and in whole blood was found to proceed without the necessity to preactivate effector cells with cytokines. In addition, the IgA1 anti-Ep-CAM human monoclonal antibody (huMab) triggered phagocytosis of tumor cells by monocyte-derived macrophages. Strikingly, simultaneous addition of IgA1 and IgG1 anti-Ep-CAM antibodies did not result in enhancement of tumor cell killing unless the effector cells were stimulated with granulocyte colony-stimulating factor. The lack of an additive effect could be attributed to an inhibitory effect of IgG on IgA-mediated tumor cell killing through binding of IgG1 to the inhibitory FcgammaRIIb receptor expressed by PMNs. These results show that IgA1 antitumor huMabs are capable of recruiting the large population of peripheral blood PMNs for tumor cell killing. This population is not effectively recruited by IgG type antibodies, currently the antibodies most frequently used for clinical application. In addition, the data suggest that a combination of IgG1 and IgA1 antitumor huMabs may collaborate in tumor cell killing in patients treated with granulocyte colony-stimulating factor.  (+info)

High pathogenic potential of low-affinity autoantibodies in experimental autoimmune hemolytic anemia. (35/2162)

To assess the potency of low-affinity anti-red blood cell (RBC) autoantibodies in the induction of anemia, we generated an immunoglobulin (Ig)G2a class-switch variant of a 4C8 IgM anti-mouse RBC autoantibody, and compared its pathogenic potential with that of its IgM isotype and a high-affinity 34-3C IgG2a autoantibody. The RBC-binding activity of the 4C8 IgG2a variant was barely detectable, at least 1,000 times lower than that of its IgM isotype, having a high-binding avidity, and that of the 34-3C IgG2a monoclonal antibody (mAb). This low-affinity feature of the 4C8 mAb was consistent with the lack of detection of opsonized RBCs in the circulating blood from the 4C8 IgG2a-injected mice. However, the 4C8 IgG2a variant was highly pathogenic, as potent as its IgM isotype and the 34-3C IgG2a mAb, due to its capacity to interact with Fc receptors involved in erythrophagocytosis. In addition, our results indicated that the pentameric form of the low-affinity IgM isotype, by promoting the binding and agglutination of RBCs, is critical for its pathogenic activity. Demonstration of the remarkably high pathogenic potency of low-affinity autoantibodies, if combined with appropriate heavy chain effector functions, highlights the critical role of the Ig heavy chain constant regions, but the relatively minor role of autoantigen-binding affinities, in autoimmune hemolytic anemia.  (+info)

Modulation of endocytic traffic in polarized Madin-Darby canine kidney cells by the small GTPase RhoA. (36/2162)

Efficient postendocytic membrane traffic in polarized epithelial cells is thought to be regulated in part by the actin cytoskeleton. RhoA modulates assemblies of actin in the cell, and it has been shown to regulate pinocytosis and phagocytosis; however, its effects on postendocytic traffic are largely unexplored. To this end, we expressed wild-type RhoA (RhoAWT), dominant active RhoA (RhoAV14), and dominant inactive RhoA (RhoAN19) in Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. RhoAV14 expression stimulated the rate of apical and basolateral endocytosis, whereas RhoAN19 expression decreased the rate from both membrane domains. Polarized basolateral recycling of transferrin was disrupted in RhoAV14-expressing cells as a result of increased ligand release at the apical pole of the cell. Degradation of basolaterally internalized epidermal growth factor was slowed in RhoAV14-expressing cells. Although apical recycling of immunoglobulin A (IgA) was largely unaffected in cells expressing RhoAV14, transcytosis of basolaterally internalized IgA was severely impaired. Morphological and biochemical analyses demonstrated that a large proportion of IgA internalized from the basolateral pole of RhoAV14-expressing cells remained within basolateral early endosomes and was slow to exit these compartments. RhoAN19 and RhoAWT expression had little effect on these postendocytic pathways. These results indicate that in polarized MDCK cells activated RhoA may modulate endocytosis from both membrane domains and postendocytic traffic at the basolateral pole of the cell.  (+info)

Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases. (37/2162)

To understand more about the factors influencing the cleavage of immunoglobulin A1 (IgA1) by microbial IgA1 proteases, a recombinant human IgA2/IgA1 hybrid molecule was generated. In the hybrid, termed IgA2/A1 half hinge, a seven-amino-acid sequence corresponding to one half of the duplicated sequence making up the IgA1 hinge was incorporated into the equivalent site in IgA2. Insertion of the IgA1 half hinge into IgA2 did not affect antigen binding capacity or the functional activity of the hybrid molecule, as judged by its ability to bind to IgA Fcalpha receptors and trigger respiratory bursts in neutrophils. Although the IgA2/A1 hybrid contained only half of the IgA1 hinge, it was found to be cleaved by a variety of different bacterial IgA1 proteases, including representatives of those that cleave IgA1 in the different duplicated halves of the hinge, namely, those of Prevotella melaninogenica, Streptococcus pneumoniae, S. sanguis, Neisseria meningitidis types 1 and 2, N. gonorrhoeae types 1 and 2, and Haemophilus influenzae type 2. Thus, for these enzymes the recognition site for IgA1 cleavage is contained within half of the IgA1 hinge region; additional distal elements, if required, are provided by either an IgA1 or an IgA2 framework. In contrast, the IgA2/A1 hybrid appeared to be resistant to cleavage with S. oralis and some H. influenzae type 1 IgA1 proteases, suggesting these enzymes require additional determinants for efficient substrate recognition.  (+info)

Increased elastase release by CF neutrophils is mediated by tumor necrosis factor-alpha and interleukin-8. (38/2162)

Cystic fibrosis (CF) is a lethal, hereditary disorder characterized by a neutrophil-dominated inflammation of the lung. We sought to determine whether neutrophils from individuals with CF release more neutrophil elastase (NE) than neutrophils from normal subjects. Our results showed that peripheral blood neutrophils (PBNs) from normal subjects and individuals with CF contained similar amounts of NE, but after preincubation with CF bronchoalveolar lavage (BAL) fluid, significantly more NE was released by CF PBNs, a release that was amplified further by incubation with opsonized Escherichia coli. To determine which components of CF BAL fluid stimulated this excessive NE release from CF PBNs, we repeated the experiments after neutralization or immunoprecipitation of tumor necrosis factor (TNF)-alpha and interleukin (IL)-8 in CF BAL fluid. We found that subsequent NE release from CF PBNs was reduced significantly when TNF-alpha and IL-8 were removed from CF BAL fluid. When TNF-alpha and IL-8 were used as activating stimuli, CF PBNs released significantly greater amounts of NE compared with PBNs from control subjects and individuals with bronchiectasis. These results indicate that CF PBNs respond abnormally to TNF-alpha and IL-8 in CF BAL fluid and react to opsonized bacteria by releasing more NE. This may help explain the increased NE burden seen in this condition.  (+info)

Cloning and characterization of the bovine MHC class I-like Fc receptor. (39/2162)

In the cow, maternal immunity is exclusively mediated by colostral Igs, but the receptor responsible for the IgG transport has not yet been identified. The role of an IgG-Fc receptor (FcRn) that resembles a class I MHC Ag in transporting IgGs through epithelial cells was recently shown in selected species. We now report the cloning and characterization of the bovine FcRn (bFcRn). The cDNA and deduced amino acid sequences show high similarity to the FcRn in other species, and it consists of three extracellular domains, a hydrophobic transmembrane region, and a cytoplasmic tail. Despite the high similarity of the extracellular domains with other species, the bovine cytoplasmic tail is the shortest thus far analyzed. Aligning the known FcRn sequences, we noted that the bovine protein shows a 3-aa deletion compared to the rat and mouse sequences in the alpha1 loop. Furthermore, we found a shorter transcript of the bFcRn reflecting an exon 6-deleted mRNA, which results from an inadequate splice acceptor site in intron 5 and produces a transmembrane-deficient molecule, as was previously demonstrated in the related MHC class I gene family in mouse and humans. The presence of bFcRn transcripts in multiple tissues, including the mammary gland, suggests their involvement both in IgG catabolism and transcytosis.  (+info)

Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. (40/2162)

Several CD4 mAbs have entered the clinic for the treatment of autoimmune diseases or transplant rejection. Most of these mAbs caused CD4 cell depletion, and some were murine mAbs which were further hampered by human anti-mouse Ab responses. To obviate these concerns, a primatized CD4 mAb, clenoliximab, was generated by fusing the V domains of a cynomolgus macaque mAb to human constant regions. The heavy chain constant region is a modified IgG4 containing two single residue substitutions designed to ablate residual Fc receptor binding activity and to stabilize heavy chain dimer formation. This study compares and contrasts the in vitro properties of clenoliximab with its matched IgG1 derivative, keliximab, which shares the same variable regions. Both mAbs show potent inhibition of in vitro T cell responses, lack of binding to complement component C1q, and inability to mediate complement-dependent cytotoxicity. However, clenoliximab shows markedly reduced binding to Fc receptors and therefore does not mediate Ab-dependent cell-mediated cytotoxicity or modulation/loss of CD4 from the surface of T cells, except in the presence of rheumatoid factor or activated monocytes. Thus, clenoliximab retains the key immunomodulatory attributes of keliximab without the liability of strong Fcgamma receptor binding. In initial clinical trials, these properties have translated to a reduced incidence of CD4+ T cell depletion.  (+info)