Local administration of delta9-tetrahydrocannabinol attenuates capsaicin-induced thermal nociception in rhesus monkeys: a peripheral cannabinoid action. (57/2700)

RATIONALE: Cannabinoids can reduce nociceptive responses by acting on peripheral cannabinoid receptors in rodents. OBJECTIVES: The study was conducted to evaluate the hypothesis that local administration of delta9-tetrahydrocannabinol (delta9-THC) can attenuate capsaicin-induced nociception in rhesus monkeys. METHODS: Capsaicin (100 microg) was applied locally in the tail of rhesus monkeys to evoke a nociceptive response, thermal allodynia, in normally innocuous 46 degrees C water. delta9-THC (10-320 microg) was coadministered with capsaicin in the tail to assess local antinociceptive effects. In addition, a local antagonism study was performed to confirm the selectivity of delta9-THC action. RESULTS: delta9-THC dose-dependently inhibited capsaicin-induced allodynia. This local antinociception was antagonized by small doses (10-100 microg) of the cannabinoid CB1 antagonist, SR141716A, applied in the tail. However, 100 microg SR141716A injected subcutaneously in the back did not antagonize local delta9-THC. CONCLUSIONS: These results indicate that the site of action of locally applied delta9-THC is in the tail. It provides functional evidence that activation of peripheral cannabinoid CB1 receptors can attenuate capsaicin-induced thermal nociception in non-human primates and suggests a new approach for cannabinoids in pain management.  (+info)

Characterization of the rat mesangial cell type 2 sulfonylurea receptor. (58/2700)

BACKGROUND: Sulfonylurea receptors are classified as either high-affinity type 1 (SUR1) or low-affinity type 2 receptors (SUR2), and the gene expression of SURs has recently been demonstrated in kidney. However, functional data regarding a renal SUR are lacking. We previously demonstrated that mesangial cell (MC) gene and protein expression of extracellular matrix components were up-regulated by the sulfonylurea, tolazamide. After noting this biological response, we next sought to investigate the presence of a sulfonylurea receptor in rat MCs. METHODS: Equilibrium binding studies employing [3H]glibenclamide as a ligand were performed on crude MC membrane preparations. Gene expression for SUR was explored by Northern analysis of cultured MCs and whole kidney tissue. The effect of sulfonylurea on intracellular Ca2+ in MCs was assayed by spectrofluorometry, and glibenclamide-induced changes in the contractility of MCs were assessed. RESULTS: MCs bound [3H]glibenclamide with a KD of 2.6 microM and a Bmax of 30.4 pmol/mg protein as determined by Scatchard analysis. Three SUR2 transcripts were detected in MCs. A major transcript was detected at 5.5 kb and minor transcripts at 7.5 and 8.6 kb. Following sulfonylurea treatment of MCs, real-time videomicroscopy revealed intense MC contraction, coinciding with oscillatory increments of intracellular Ca2+ concentration. Further evidence of sulfonylurea-induced MC contraction was demonstrated by glibenclamide-induced deformation of a silicone rubber substrate. CONCLUSIONS: These results demonstrate that SUR2 resides on MCs. Functional activation of this receptor by sulfonylurea induces Ca2+ transients that result in MC contraction.  (+info)

Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. (59/2700)

The CB1 subtype of the cannabinoid receptor is present on neurons in the brain and mediates the perceptual effects of Delta9-tetrahydrocannabinol and other cannabinoids. We found that cat cerebral arterial smooth muscle cells (VSMC) contain the protein for the CB1 receptor and express a cDNA that has >98% amino acid homology to the CB1 cDNA expressed in rat and human neurons. Activation of the CB1 cannabinoid receptor has been shown to decrease the opening of N-type voltage-gated Ca2+ channels in neurons through a pertussis toxin-sensitive GTP-binding protein. In the present study we tested the hypothesis that activation of the cannabinoid CB1 receptor in cerebral VSMC inhibits voltage-gated Ca2+ channels and results in cerebral vasodilation. The predominant Ca2+ current identified in cat cerebral VSMC is a voltage-gated, dihydropyridine-sensitive, L-type Ca2+ current. The cannabimimetic drug WIN-55,212-2 (10-100 nM) induced concentration-dependent inhibition of peak L-type Ca2+ current, which reached a maximum of 82 +/- 4% at 100 nM (n = 14). This effect was mimicked by the putative endogenous CB1-receptor agonist anandamide, which produced a concentration-related reduction of peak L-type Ca2+ current with a maximum inhibition (at 300 nM) of 39 +/- 4% (n = 12). The inhibitory effects of both ligands on peak L-type Ca2+ currents were abolished by pertussis toxin pretreatment and application of the CB1-receptor antagonist SR-141716A (100 nM, n = 5). Both WIN-55,212-2 and anandamide produced concentration-dependent relaxation of preconstricted cerebral arterial segments that was abolished by SR-141716A. These results indicate that the CB1 receptor is expressed in cat cerebral VSMC and that the cerebral vasculature is one of the targets for endogenous cannabinoids. These findings suggest that the CB1 receptor and its endogenous ligand may play a fundamental role in the regulation of cerebral arterial tone and reactivity by modulating the influx of Ca2+ through L-type Ca2+ channels.  (+info)

Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices. (60/2700)

1. The arachidonic acid derivative arachidonylethanolamide (anandamide) is an endogeneous ligand of cannabinoid receptors that induces pharmacological actions similar to those of cannabinoids such as delta9-tetrahydrocannabinol (THC). We examined whether anandamide can influence excessive neuronal activity by investigating stimulation-induced population spikes and epileptiform activity in rat hippocampal slices. For this purpose, the effects of anandamide were compared with those of the synthetic cannabinoid agonist WIN 55,212-2 and its inactive S(-)-enantiomer WIN 55,212-3. 2. Both anandamide (1 and 10 microM) and WIN 55,212-2 (0.1 and 1 microM) decreased the amplitude of the postsynaptic population spike and the slope of the field excitatory postsynaptic potential (field e.p.s.p.) without affecting the presynaptic fibre spike of the afferents. At a concentration of 1 microM, WIN 55,212-2 completely suppressed the postsynaptic spike, whereas the S(-)-enantiomer WIN 55,212-3 produced only a slight depression. The CB1 receptor antagonist SR 141716 blocked the inhibition evoked by the cannabinoids. SR 141716 had a slight facilitatory effect on neuronal excitability by itself. 3. Anandamide shifted the input-output curve of the postsynaptic spike and the field e.p.s.p. to the right and increased the magnitude of paired-pulse facilitation indicating a presynaptic mechanism of action. 4. Anandamide and WIN 55,212-2, but not WIN 55,212-3, attenuated both stimulus-triggered epileptiform activity in CA1 elicited by omission of Mg2+ and spontaneously occurring epileptiform activity in CA3 elicited by omission of Mg2+ and elevation of K+ to 8 mM. The antiepileptiform effect of these cannabinoids was blocked by SR 141716. 5. In conclusion, cannabinoid receptors of the CB1 type as well as their endogeneous ligand, anandamide, are involved in the control of neuronal excitability, thus reducing excitatory neurotransmission at a presynaptic site, a mechanism which might be involved in the prevention of excessive excitability leading to epileptiform activity.  (+info)

Characterization of the mouse sulfonylurea receptor 1 promoter and its regulation. (61/2700)

The ATP-sensitive potassium channels (K+ATP channels) are heteromultimeric structures formed by a member of the sulfonylurea receptor (SUR) family and a member of the inwardly rectifying potassium channel family (Kir6.x). The K+ATP channels play an essential role in nutrient-induced insulin secretion from the pancreatic beta-cell. We have cloned and characterized the promoter region of the mouse SUR1 gene, and have shown that it lacks CAAT and TATA boxes or an initiator element. Studies of transcription initiation in several tissues showed that there is a common SUR1 promoter in brain, heart, and pancreas and in the pancreatic beta-cell line, betaTC3. The SUR1 gene uses multiple transcription start sites with the major site located 54 base pairs 5'-upstream of the translation initiation site. Transient transfection experiments in pancreatic beta-cell lines showed that the proximal promoter fragment -84/+54 is sufficient for significant transcriptional activity. The proximal promoter region contains multiple SP1-binding sites, and cotransfection experiments of the SUR1 promoter-luciferase vector with SP1 expression vector in Drosophila SL2 cells demonstrated a stimulatory effect of SP1 on SUR1 transcriptional activity. The mobility shift assays confirmed the interaction of the SP1 transcription factor with the proximal promoter region of the SUR1 gene. Together, these results indicate that SP1 may mediate transcription initiation of the SUR1 gene. In addition, we have described the coordinate regulation of the gene expression of both K+ATP channel subunits by glucocorticoids. SUR1 and Kir6.2 mRNA levels are down-regulated by approximately 40-50% in response to glucocorticoid treatment. Interestingly, the extent of the inhibitory effect as well as the kinetics and sensitivity are very similar for both mRNAs. Studies of mRNA turnover demonstrate that glucocorticoids most likely decrease the transcriptional activity of both SUR1 and Kir6.2 genes since glucocorticoids failed to affect the stability of each mRNA. Likewise, the reduction in mRNA levels was correlated with a decrease in SUR1 and Kir6.2 protein levels.  (+info)

Involvement of the n-terminus of Kir6.2 in coupling to the sulphonylurea receptor. (62/2700)

1. ATP-sensitive potassium (KATP) channels are composed of pore-forming Kir6.2 and regulatory SUR subunits. ATP inhibits the channel by interacting with Kir6.2, while sulphonylureas block channel activity by interaction with a high-affinity site on SUR1 and a low-affinity site on Kir6.2. MgADP and diazoxide interact with SUR1 to promote channel activity. 2. We examined the effect of N-terminal deletions of Kir6.2 on the channel open probability, ATP sensitivity and sulphonylurea sensitivity by recording macroscopic currents in membrane patches excised from Xenopus oocytes expressing wild-type or mutant Kir6.2/SUR1. 3. A 14 amino acid N-terminal deletion (DeltaN14) did not affect the gating, ATP sensitivity or tolbutamide block of a truncated isoform of Kir6.2, Kir6.2DeltaC26, expressed in the absence of SUR1. Thus, the N-terminal deletion does not alter the intrinsic properties of Kir6.2. 4. When Kir6.2DeltaN14 was coexpressed with SUR1, the resulting KATP channels had a higher open probability (Po = 0.7) and a lower ATP sensitivity (Ki = 196 microM) than wild-type (Kir6.2/SUR1) channels (Po = 0.32, Ki = 28 microM). High-affinity tolbutamide block was also abolished. 5. Truncation of five or nine amino acids from the N-terminus of Kir6.2 also enhanced the open probability, and reduced both the ATP sensitivity and the fraction of high-affinity tolbutamide block, although to a lesser extent than for the DeltaN14 deletion. Site-directed mutagenesis suggests that hydrophobic residues in Kir6. 2 may be involved in this effect. 6. The reduced ATP sensitivity of Kir6.2DeltaN14 may be explained by the increased Po. However, when the Po was decreased (by ATP), tolbutamide was unable to block Kir6. 2DeltaN14/SUR1-K719A,K1385M currents, despite the fact that the drug inhibited Kir6.2-C166S/SUR1-K719A,K1385M currents (which in the absence of ATP have a Po of > 0.8 and are not blocked by tolbutamide). Thus the N-terminus of Kir6.2 may be involved in coupling sulphonylurea binding to SUR1 to closure of the Kir6.2 pore.  (+info)

Moxonidine, a selective alpha2-adrenergic and imidazoline receptor agonist, produces spinal antinociception in mice. (63/2700)

alpha2-Adrenergic receptor (AR)-selective compounds produce antihypertensive and antinociceptive effects. Moxonidine alleviates hypertension in multiple species, including humans. This study demonstrates that intrathecally administered moxonidine produces antinociception in mice. Antinociception was detected via the (52.5 degrees C) tail-flick and Substance P (SP) nociceptive tests. Moxonidine was intrathecally administered to ICR, mixed C57BL/6 x 129/Sv [wild type (WT)], or C57BL/6 x 129/Sv mice with dysfunctional alpha2aARs (D79N-alpha2a). The alpha2AR-selective antagonist SK&F 86466 and the mixed I1/alpha2AR-selective antagonist efaroxan were tested for inhibition of moxonidine-induced antinociception. Moxonidine prolonged tail-flick latencies in ICR (ED50 = 0.5 nmol; 0. 3-0.7), WT (0.17 nmol; 0.09-0.32), and D79N-alpha2a (0.32 nmol; 0. 074-1.6) mice. Moxonidine inhibited SP-elicited behavior in ICR (0. 04 nmol; 0.03-0.07), WT (0.4 nmol; 0.3-0.5), and D79N-alpha2a (1.1 nmol; 0.7-1.7) mice. Clonidine produced antinociception in WT but not D79N-alpha2a mice. SK&F 86466 and efaroxan both antagonized moxonidine-induced inhibition of SP-elicited behavior in all mouse lines. SK&F 86466 antagonism of moxonidine-induced antinociception implicates the participation of alpha2ARs. The comparable moxonidine potency between D79N-alpha2a and WT mice suggests that receptors other than alpha2a mediate moxonidine-induced antinociception. Conversely, absence of clonidine efficacy in D79N-alpha2a mice implies that alpha2aAR activation enables clonidine-induced antinociception. When clinically administered, moxonidine induces fewer side effects relative to clonidine; moxonidine-induced antinociception appears to involve a different alpha2AR subtype than clonidine-induced antinociception. Therefore, moxonidine may prove to be an effective treatment for pain with an improved side effect profile.  (+info)

Respiratory action of capsaicin microinjected into the nucleus of the solitary tract: involvement of vanilloid and tachykinin receptors. (64/2700)

1. The respiratory response to microinjection of capsaicin into the commissural nucleus of the solitary tract (cNTS) of urethane-anaesthetized rats was investigated in the absence and presence of the competitive vanilloid (capsaicin) antagonist, capsazepine, and selective tachykinin NK1, NK2 and NK3 antagonists (RP 67580, SR 48968 and SR 142801, respectively). 2. Microinjection of capsaicin reduced respiratory frequency but not tidal volume (VT), leading to an overall reduction in minute ventilation (VE). The effect was dose-dependent between 0.5 and 2 nmol capsaicin. Doses greater than 2 nmol produced apnoea. Tachyphylaxis was observed following repeated injection of capsaicin (1 nmol, 30 min apart). 3. Capsazepine (1 nmol) had no effect on frequency or VT when injected alone but completely blocked the respiratory response to capsaicin (1 nmol). 4. RP 67580 (1 but not 5 nmol) alone depressed frequency and VT slightly. Moreover, RP 67580 appeared to potentiate the bradypnoeic effect of capsaicin. In contrast, SR 48968 and SR 142801 (1 and 5 nmol) alone had no significant effect on respiration. However, both agents significantly attenuated the reduction in frequency produced by capsaicin. 5. In conclusion, microinjection of capsaicin into the cNTS decreases overall ventilation, primarily by reducing frequency. The action of capsaicin appears from the data to be mediated by vanilloid receptors since it is blocked by the competitive vanilloid antagonist capsazepine and is subject to tachyphylaxis. However, since NK2 (SR 48968) and NK3 (SR 142801) receptor antagonists block the actions of capsaicin, we propose that capsaicin acts also by releasing tachykinins from central afferent terminals in the cNTS.  (+info)