Loading...
(1/116) N-linked glycosylation is required for plasma membrane localization of D5, but not D1, dopamine receptors in transfected mammalian cells.

We have analyzed the role of N-linked glycosylation in functional cell surface expression of the D1 and D5 dopamine receptor subtypes. Treatment of transfected HEK 293 cells with tunicamycin, an inhibitor of N-linked oligosaccharide addition, was found to prevent localization of D5 receptors in the plasma membrane. In contrast, tunicamycin treatment had no effect on the plasma membrane localization of the D1 receptor. Polymerase chain reaction mutagenesis was used to generate a panel of D5 receptors containing mutations in the three predicted sites of N-linked glycosylation. Expression of mutant receptors indicated that glycosylation of residue N7 was the major determinant of D5 receptor plasma membrane localization. Mutation of a comparable site in the D1 receptor at position N5 had no effect on the delivery of the D1 receptor to the cell surface. Tunicamycin treatment during receptor biosynthesis, but not N-glycosidase F digestion of mature receptors, abrogated binding of the D5 receptor antagonist [(3)H]SCH23390, suggesting that while oligosaccharide moieties play a key role in the cell surface expression of D5 receptors, they do not appear to contribute to the receptor's ligand binding properties. Together, our data indicate a differential requirement for N-linked glycosylation in functional cell surface expression of D1 and D5 dopamine receptors.  (+info)

(2/116) Localization of the gene for a novel autosomal recessive neurodegenerative Huntington-like disorder to 4p15.3.

A consanguineous family affected by an autosomal recessive, progressive neurodegenerative Huntington-like disorder, was tested to rule out juvenile-onset Huntington disease (JHD). The disease manifests at approximately 3-4 years and is characterized by both pyramidal and extrapyramidal abnormalities, including chorea, dystonia, ataxia, gait instability, spasticity, seizures, mutism, and intellectual impairment. Brain magnetic resonance imaging (MRI) findings include progressive frontal cortical atrophy and bilateral caudate atrophy. Huntington CAG trinucleotide-repeat analyses ruled out JHD, since all affected individuals had repeat numbers within the normal range. The presence of only four recombinant events (straight theta=.2) between the disease and the Huntington locus in 20 informative meioses suggested that the disease localized to chromosome 4. Linkage was initially achieved with marker D4S2366 at 4p15.3 (LOD 3.03). High-density mapping at the linked locus resulted in homozygosity for markers D4S431 and D4S394, which span a 3-cM region. A maximum LOD score of 4.71 in the homozygous interval was obtained. Heterozygosity at the distal D4S2366 and proximal D4S2983 markers defines the maximum localization interval (7 cM). Multiple brain-related expressed sequence tags (ESTs) with no known disease association exist in the linkage interval. Among the three known genes residing in the linked interval (ACOX3, DRD5, QDPR), the most likely candidate, DRD5, encoding the dopamine receptor D5, was excluded, since all five affected family members were heterozygous for an intragenic dinucleotide repeat. The inheritance pattern and unique localization to 4p15.3 are consistent with the identification of a novel, autosomal recessive, neurodegenerative Huntington-like disorder.  (+info)

(3/116) Distinct function of the cytoplasmic tail in human D1-like receptor ligand binding and coupling.

To delineate the role of the cytoplasmic tail in the distinct binding and coupling properties of human dopamine D1-like receptors, chimeric receptors were generated in which the entire tail region of wild-type human D1A (or D1) and D1B (or D5) receptors was exchanged. The hD1A-D1BT, but not hD1B-D1AT, receptor expression was dramatically reduced compared with wild-type receptor expression. Swapping the cytoplasmic tail resulted in a full switch of dopamine binding affinity and constitutive activity, while dopamine potency decreased and agonist-mediated maximal activation of adenylyl cyclase increased for both chimeras. Hence, the cytoplasmic tail plays a crucial role in D1-like receptor expression, agonist binding affinity and constitutive activation but regulates in a distinct fashion the formation of D1A and D1B receptor active states upon dopamine binding.  (+info)

(4/116) Dopamine D5 receptor agonist high affinity and constitutive activity profile conferred by carboxyl-terminal tail sequence.

The mammalian dopamine D1-like receptor gene family is comprised of two members, termed D1/D1A and D5/D1B. In an attempt to define the role of the carboxyl terminal (CT) tail in the expression of D5 subtype-specific pharmacological and constitutive activity profiles, we examined a series of D5 receptor chimeras in which only the CT tail was swapped with corresponding sequences encoding human/vertebrate D1-like receptors. D5/D1(CT) or D5/D1D(CT) tail substitution mutants displayed a rank order of potency and agonist affinities virtually mimicking wild-type (wt) D1 receptors, as indexed by both ligand binding and dopamine-stimulated cAMP accumulation assays, and, similar to wt D1 receptors, did not exhibit receptor constitutive activity or responsiveness to inverse agonists. D1/D5(CT) or D1/D1D(CT) tail receptor mutants displayed agonist pharmacological and functional characteristics not significantly different from parental D1 or mutant D5/D1(CT) and D5/D1D(CT) receptors. The affinities for numerous antagonists remained essentially unchanged for all receptor chimeras relative to parental wt receptors. A series of stepwise D5-CT-tail truncation/deletion mutants identified the region encoded by amino acids 438-448 and particularly Gln(439), as necessary and sufficient for the full expression of high affinity agonist and functional D5 receptor characteristics. Site-directed mutagenesis of the highly conserved D5/D1B receptor residue Gln(439)-(Ala/Ile), converts the full-length D5 receptor to one displaying "super" D5 characteristics with expressed affinities for discriminating agonists approximately 4- to 5-fold higher than wt D5 but without any concomitant increases of agonist-independent basal cAMP accumulation or intrinsic activity. Taken together, these data suggest that, in addition to other well characterized receptor domains, the agonist pharmacological and functional signature of the D5/D1B receptor is modulated by sequence-specific motifs within the CT tail and that one conserved amino acid in this region can further regulate D5 agonist high affinity binding interactions independent of receptor constitutive activity.  (+info)

(5/116) Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro.

The effects of dopamine (DA) on a persistent Na(+) current (I(NaP)) in layer V-VI prefrontal cortical (PFC) pyramidal cells were studied using whole cell voltage-clamp recordings in rat PFC slices. After blocking K(+) and Ca (2+) currents, a tetrodotoxin-sensitive I(NaP) was activated by slow depolarizing voltage ramps or voltage steps. DA modulated the I(NaP) in a voltage-dependent manner: increased amplitude of I(NaP) at potentials more negative than -40 mV, but decreased at more positive potentials. DA also slowed the inactivation process of I(NaP). The D1/D5 dopamine receptor agonists SKF 38393, SKF 81297, and dihydrexidine (3-10 microM), but not the dopamine D2/D3 receptor agonist qiunpirole (1-20 microM), mimicked the effects of DA on I(NaP). Modulation of I(NaP) by D1/D5 agonists was blocked by the D1/D5 antagonist SCH23390. Bath application of specific protein kinase C inhibitor, chelerhythrine, or inclusion of the specific protein kinase C inhibiting peptide([19-36]) in the recording pipette, but not protein kinase A inhibiting peptide([5-24]), blocked the effect of D1/D5 agonists on I(NaP). In current-clamp recordings, D1/D5 receptors activation enhanced the excitability of cortical pyramidal cells. Application of the D1/D5 agonist SKF 81297 induced a long-lasting decrease in the first spike latency in response to depolarizing current ramp. This was associated with a shift in the start of nonlinearity in the slope resistance to more negative membrane potentials. We proposed that this effect is due to a D1/D5 agonist-induced leftward shift in the activation of I(NaP). This enables DA to facilitate the firing of PFC neurons in response to depolarizing inputs.  (+info)

(6/116) Dopamine D5 receptors in nucleus accumbens contribute to the detection of cocaine in rats.

Dopamine D(1)/D(5) receptor antagonism has been shown to block the euphoric and stimulatory effects of cocaine in humans and rats. In the present study, rats trained to discriminate the presence of cocaine (10 mg/kg) from its absence were used to analyze the functional contribution of D(1) (D(1)R) versus D(5) (D(5)R) receptors in the nucleus accumbens, an important neural site for the actions of cocaine. Bilateral microinfusion into the nucleus accumbens of an antisense oligonucleotide directed at the D(5)R (0. 75 nmol/0.3 microl per side, two times per day for 3 d) elicited a downward shift in the dose-effect curve for cocaine with a suppression of peak efficacy; the dose of cocaine estimated to elicit 50% drug-lever responding (ED(50)) was 6.71 mg/kg when assessed 12 hr after the D(5)R antisense oligonucleotide compared to the control ED(50) of 1.83 mg/kg and to the ED(50) of 1.75 mg/kg established 7 d after the last D(5)R antisense oligonucleotide infusion. The D(1)R antisense and scrambled oligonucleotide (0.75 nmol/0.3 microl per side, two times per day for 3 d) were both ineffective. Thus, using drug discrimination techniques that model the subjective effects of cocaine, we show that responsiveness to cocaine is dramatically attenuated after interference with the process of translation of the D(5)R mRNA to its protein product. These findings suggest that D(5)R is a functionally important target site for the indirect actions of cocaine and that rigorous investigations of the function of D(5)R may help guide the discovery of strategies for pharmacotherapy in cocaine dependence.  (+info)

(7/116) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons.

Dopamine acts mainly through the D1/D5 receptor in the prefrontal cortex (PFC) to modulate neural activity and behaviors associated with working memory. To understand the mechanism of this effect, we examined the modulation of excitatory synaptic inputs onto layer V PFC pyramidal neurons by D1/D5 receptor stimulation. D1/D5 agonists increased the size of N-methyl-d-aspartate (NMDA) component of excitatory postsynaptic currents (EPSCs) through a postsynaptic mechanism. In contrast, D1/D5 agonists caused a slight reduction in the size of the non-NMDA component of EPSCs through a small decrease in release probability. With 20 Hz synaptic trains, we found that the D1/D5 agonists increased depolarization of summating the NMDA component of excitatory postsynaptic potential (EPSP). By increasing the NMDA component of EPSCs, yet slightly reducing release, D1/D5 receptor activation selectively enhanced sustained synaptic inputs and equalized the sizes of EPSPs in a 20-Hz train.  (+info)

(8/116) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro.

Dopamine and glutamate are key neurotransmitters involved in learning and memory mechanisms of the brain. These two neurotransmitter systems converge on nerve cells in the neostriatum. Dopamine modulation of activity-dependent plasticity at glutamatergic corticostriatal synapses has been proposed as a cellular mechanism for learning in the neostriatum. The present research investigated the role of specific subtypes of dopamine receptors in long-term potentiation (LTP) in the corticostriatal pathway, using intracellular recording from striatal neurons in a corticostriatal slice preparation. In agreement with previous reports, LTP could be induced reliably under Mg(2+)-free conditions. This Mg(2+)-free LTP was blocked by dopamine depletion and by the dopamine D-1/D-5 receptor antagonist SCH 23390 but was not blocked by the dopamine D-2 receptor antagonist remoxipride or the GABA(A) antagonist picrotoxin. In dopamine-depleted slices, the ability to induce LTP could be restored by bath application of the dopamine D-1/D-5 receptor agonist, SKF 38393. These results show that activation of dopamine D-1/D-5 receptors by either endogenous dopamine or exogenous dopamine agonists is a requirement for the induction of LTP in the corticostriatal pathway. These findings have significance for current understanding of learning and memory mechanisms of the neostriatum and for theoretical understanding of the mechanism of action of drugs used in the treatment of psychotic illnesses and Parkinson's disease.  (+info)