Loading...
(1/1485) Enhanced myeloid progenitor cell cycling and apoptosis in mice lacking the chemokine receptor, CCR2.

Chemokines regulate hematopoiesis in part by influencing the proliferative status of myeloid progenitor cells (MPC). Human MCP-1/murine JE, a myelosuppressive chemokine, specifically binds C-C chemokine receptor 2 (CCR2). Transgenic mice containing a targeted disruption in CCR2 that prevents expression of CCR2 mRNA and protein and have MPC that are insensitive to inhibition by MCP-1 and JE in vitro were assessed for potential abnormalities in growth of bone marrow (BM) and spleen MPC. MPC in both unseparated and c-kit+lin- populations of BM from CCR2-deficient (-/-) mice were in a greatly increased proliferation state compared with CCR2 littermate control (+/+) mice, an effect not apparent with progenitors from spleens of CCR2 (-/-) mice. Increased cycling status of CCR2 (-/-) BM MPC did not result in increased numbers of nucleated cells or MPC in BM or spleens of CCR2 (-/-) mice. Possible reasons for this apparent discrepancy were highlighted by flow cytometric analysis of c-kit+lin- BM cells and colony formation by MPC subjected to delayed addition of growth factors. The c-kit+lin- population of BM cells from CCR2 (-/-) mice had a significantly higher percentage of apoptotic cells than those from CCR2 (+/+) BM. However, elevated apoptosis was not associated with decreased numbers of c-kit+lin- cells. The increased percentage of apoptotic c-kit+lin- cells was due to elevated apoptosis within the c-kitdimlin-, but not the c-kitbrightlin-, subpopulations of cells. Consistent with enhanced apoptosis of phenotypically defined cells, MPC from CCR2 (-/-) BM and purified c-kit+lin- cells demonstrated decreased cell survival in vitro upon delayed addition of growth factors. The data suggest that signals received by CCR2 limit proliferation of progenitor cells in the BM, but also enhance survival of these cells.  (+info)

(2/1485) Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities.

The receptor for the gene product of the obesity gene, leptin, was recently reported to be expressed on murine and human hematopoietic progenitor cells. Therefore, we studied the expression of the leptin receptor, OB-R, in normal myeloid precursors, human leukemia cell lines, and primary leukemic cells using reverse-transcriptase polymerase chain reaction. In normal hematopoiesis, OB-R was expressed in CD34(+) cells. Normal promyelocytes (CD34(-)33(+) and CD34(-)13(+)) expressed only very low levels of the short, presumably nonsignaling isoform. Both the long and short isoforms of OB-R were expressed in 10 of 22 samples from patients with newly diagnosed primary or secondary acute myeloid leukemia (AML), with a higher incidence of the long isoform in primary AML (87.6% v 28.6%; P =.01). The incidence of OB-R expression was higher in recurrent than in newly diagnosed AML (P <.001), and samples from four patients with refractory AML showed strong expression of both isoforms. Both OB-R isoforms were also expressed in newly diagnosed and recurrent acute promyelocytic leukemia cells but were essentially absent in samples of chronic or acute lymphocytic leukemia. In vitro growth of myeloid leukemic cell lines and of blasts from 14 primary AMLs demonstrated that recombinant human leptin alone induced low level proliferation, significantly (P <.05) increased proliferation induced by recombinant human granulocyte colony-stimulating factor, interleukin 3, and stem cell factor in a subset of AML and increased colony formation (P <.005). Also, leptin reduced apoptosis induced by cytokine withdrawal in MO7E and TF-1 cells. Serum leptin levels correlated only with body mass index (P <. 001) and gender (P =.03). Results confirm the reported expression of leptin receptor in normal CD34(+) cells and demonstrate the frequent expression of leptin receptors in AML blasts. While normal promyelocytes lack receptor expression, leukemic promyelocytes express both isoforms. We also demonstrate proliferative effects of leptin alone and in combination with other physiologic cytokines, and anti-apoptotic properties of leptin. These findings could have implications for the pathophysiology of AML.  (+info)

(3/1485) No evidence for an effect of the CCR5 delta32/+ and CCR2b 64I/+ mutations on human immunodeficiency virus (HIV)-1 disease progression among HIV-1-infected injecting drug users.

The relationship between CCR5 and CCR2b genotypes and human immunodeficiency virus (HIV)-1 disease progression was studied among the 108 seroconverters of the Amsterdam cohort of injecting drug users (IDUs). In contrast to earlier studies among homosexual men, no effect on disease progression of the CCR5 Delta32/+ and the CCR2b 64I/+ genotypes was found, when progression to AIDS, death, or a CD4 cell count <200/microL was compared by a Cox proportional hazards model. Furthermore, CD4 cell decline (by a regression model for repeated measurements) and virus load in the first 3 years after seroconversion did not differ between the CCR5 and CCR2b wild type and heterozygous genotypes. A nested matched case-control study also revealed no significant effect of the CCR5 and CCR2b mutations. Immunologic differences between IDUs and homosexual men may account for the observed lack of effect. Alternatively, difference in transmission route or characteristics of the HIV-1 variants that circulate in IDUs could also explain this phenomenon.  (+info)

(4/1485) Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors.

We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6-family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases-mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.  (+info)

(5/1485) Chemokine and chemokine receptor gene variants and risk of non-Hodgkin's lymphoma in human immunodeficiency virus-1-infected individuals.

Normal B-lymphocyte maturation and proliferation are regulated by chemotactic cytokines (chemokines), and genetic polymorphisms in chemokines and chemokine receptors modify progression of human immunodeficiency virus-1 (HIV-1) infection. Therefore, 746 HIV-1-infected persons were examined for associations of previously described stromal cell-derived factor 1 (SDF-1) chemokine and CCR5 and CCR2 chemokine receptor gene variants with the risk of B-cell non-Hodgkin's lymphoma (NHL). The SDF1-3'A chemokine variant, which is carried by 37% of whites and 11% of blacks, was associated with approximate doubling of the NHL risk in heterozygotes and roughly a fourfold increase in homozygotes. After a median follow-up of 11.7 years, NHL developed in 6 (19%) of 30 SDF1-3'A/3'A homozygotes and 22 (10%) of 202 SDF1-+/3'A heterozygotes, compared with 24 (5%) of 514 wild-type subjects. The acquired immunodeficiency syndrome (AIDS)-protective chemokine receptor variant CCR5-triangle up32 was highly protective against NHL, whereas the AIDS-protective variant CCR2-64I had no significant effect. Racial differences in SDF1-3'A frequency may contribute to the lower risk of HIV-1-associated NHL in blacks compared with whites. SDF-1 genotyping of HIV-1-infected patients may identify subgroups warranting enhanced monitoring and targeted interventions to reduce the risk of NHL.  (+info)

(6/1485) Cytoplasmic domains of the leukemia inhibitory factor receptor required for STAT3 activation, differentiation, and growth arrest of myeloid leukemic cells.

Leukemia inhibitory factor (LIF) induces growth arrest and macrophage differentiation of mouse myeloid leukemic cells through the functional LIF receptor (LIFR), which comprises a heterodimeric complex of the LIFR subunit and gp130. To identify the regions within the cytoplasmic domain of LIFR that generate the signals for growth arrest, macrophage differentiation, and STAT3 activation independently of gp130, we constructed chimeric receptors by linking the transmembrane and intracellular regions of mouse LIFR to the extracellular domains of the human granulocyte macrophage colony-stimulating factor receptor (hGM-CSFR) alpha and betac chains. Using the full-length cytoplasmic domain and mutants with progressive C-terminal truncations or point mutations, we show that the two membrane-distal tyrosines with the YXXQ motif of LIFR are critical not only for STAT3 activation, but also for growth arrest and differentiation of WEHI-3B D+ cells. A truncated STAT3, which acts in a dominant negative manner was introduced into WEHI-3B D+ cells expressing GM-CSFRalpha-LIFR and GM-CSFRbetac-LIFR. These cells were not induced to differentiate by hGM-CSF. The results indicate that STAT3 plays essential roles in the signals for growth arrest and differentiation mediated through LIFR.  (+info)

(7/1485) Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry?

Despite being able to use the Bonzo coreceptor as efficiently as CCR5 in transfected cells, pediatric human immunodeficiency virus type 1 isolate P6 was unable to replicate in peripheral blood mononuclear cells (PBMC) lacking the CCR5 receptor. Furthermore, its replication in wild-type PBMC was completely inhibited by inhibitors of CCR5-mediated entry. Similarly, maternal isolate M6 could use CCR5, CXCR4, Bonzo, and other coreceptors in transfected cells but was completely sensitive to inhibitors of CCR5- and CXCR4-mediated entry when grown in PBMC. The ability of these viruses to use coreceptors in addition to CCR5 and CXCR4 in vitro was, therefore, irrelevant to their drug sensitivity in primary cells. We argue that CCR5 and CXCR4 should remain the primary targets for antiviral drug development, pending strong evidence to the contrary.  (+info)

(8/1485) Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia.

Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare disorder expressed in infancy and characterized by isolated thrombocytopenia and megakaryocytopenia with no physical anomalies. Our previous hematological analysis indicated similarities between human CAMT and murine c-mpl (thrombopoietin receptor) deficiency. Because the c-mpl gene was considered as one of the candidate genes for this disorder, we analyzed the genomic sequence of the c-mpl gene of a 10-year-old Japanese girl with CAMT. We detected two heterozygous point mutations: a C-to-T transition at the cDNA nucleotide position 556 (Q186X) in exon 4 and a single nucleotide deletion of thymine at position 1,499 (1,499 delT) in exon 10. Both mutations were predicted to result in a prematurely terminated c-Mpl protein, which, if translated, lacks all intracellular domains essential for signal transduction. Each of the mutations was segregated from the patient's parents. Accordingly, the patient was a compound heterozygote for two mutations of the c-mpl gene, each derived from one of the parents. The present study suggests that at least a certain type of CAMT is caused by the c-mpl mutation, which disrupts the function of thrombopoietin receptor.  (+info)