Loading...
(1/2860) Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis.

The identification of stromal cell-derived factor (SDF)-1alpha as a chemoattractant for human progenitor cells suggests that this chemokine and its receptor might represent critical determinants for the homing, retention, and exit of precursor cells from hematopoietic organs. In this study, we investigated the expression profile of CXCR4 receptor and the biological activity of SDF-1alpha during megakaryocytopoiesis. CD34(+) cells from bone marrow and cord blood were purified and induced to differentiate toward the megakaryocyte lineage by a combination of stem-cell factor (SCF) and recombinant human pegylated megakaryocyte growth and development factor (PEG-rhuMGDF). After 6 days of culture, a time where mature and immature megakaryocytes were present, CD41(+) cells were immunopurified and CXCR4mRNA expression was studied. High transcript levels were detected by a RNase protection assay in cultured megakaryocytes derived from cord blood CD34(+) cells as well as in peripheral blood platelets. The transcript levels were about equivalent to that found in activated T cells. By flow cytometry, a large fraction (ranging from 30% to 100%) of CD41(+) cells showed high levels of CXCR4 antigen on their surface, its expression increasing in parallel with the CD41 antigen during megakaryocytic differentiation. CXCR4 protein was also detected on peripheral blood platelets. SDF-1alpha acts on megakaryocytes by inducing intracellular calcium mobilization and actin polymerization. In addition, in in vitro transmigration experiments, a significant proportion of megakaryocytes was observed to respond to this chemokine. This cell migration was inhibited by pertussis toxin, indicating coupling of this signal to heterotrimeric guanine nucleotide binding proteins. Although a close correlation between CD41a and CXCR4 expession was observed, cell surface markers as well as morphological criteria indicate a preferential attraction of immature megakaryocytes (low level of CD41a and CD42a), suggesting that SDF-1alpha is a potent attractant for immature megakaryocytic cells but is less active on fully mature megakaryocytes. This hypothesis was further supported by the observation that SDF-1alpha induced the migration of colony forming unit-megakaryocyte progenitors (CFU-MK) and the expression of activation-dependent P-selectin (CD62P) surface antigen on early megakaryocytes, although no effect was observed on mature megakaryocytes and platelets. These results indicate that CXCR4 is expressed by human megakaryocytes and platelets. Furthermore, based on the lower responses of mature megakaryocytes and platelets to SDF-1alpha as compared with early precursors, these data suggest a role for this chemokine in the maintenance and homing during early stages of megakaryocyte development. Moreover, because megakaryocytes are also reported to express CD4, it becomes important to reevaluate the role of direct infection of these cells by the human immunodeficiency virus (HIV)-1 in HIV-1-related thrombocytopenia.  (+info)

(2/2860) Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b.

The transcriptional transactivator (Tat) from the human immunodeficiency virus (HIV) does not function efficiently in Chinese hamster ovary (CHO) cells. Only somatic cell hybrids between CHO and human cells and CHO cells containing human chromosome 12 (CHO12) support high levels of Tat transactivation. This restriction was mapped to interactions between Tat and TAR. Recently, human cyclin T1 was found to increase the binding of Tat to TAR and levels of Tat transactivation in rodent cells. By combining individually with CDK9, cyclin T1 or related cyclins T2a and T2b form distinct positive transcription elongation factor b (P-TEFb) complexes. In this report, we found that of these three cyclins, only cyclin T1 is encoded on human chromosome 12 and is responsible for its effects in CHO cells. Moreover, only human cyclin T1, not mouse cyclin T1 or human cyclins T2a or T2b, supported interactions between Tat and TAR in vitro. Finally, after introducing appropriate receptors and human cyclin T1 into CHO cells, they became permissive for infection by and replication of HIV.  (+info)

(3/2860) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage.

To define predictors of survival time in late human immunodeficiency virus type 1 (HIV-1) disease, long- and short-duration survivors were studied after their CD4+ T cells fell to +info)

(4/2860) Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses.

CCR5 and CXCR4 are the principal CD4-associated coreceptors used by human immunodeficiency virus type 1 (HIV-1). CXCR4 is also a receptor for the feline immunodeficiency virus (FIV). The rat CXCR4 cannot mediate infection by HIV-1NDK or by FIVPET (both cell line-adapted strains) because of sequence differences with human CXCR4 in the second extracellular loop (ECL2). Here we made similar observations for HIV-189.6 (a strain also using CCR5) and for a primary HIV-1 isolate. It showed the role of ECL2 in the coreceptor activity of CXCR4 for different types of HIV-1 strains. By exchanging ECL2 residues between human and rat CXCR4, we found that several amino acid differences contributed to the inactivity of the rat CXCR4 toward HIV-189.6. In contrast, its inactivity toward HIV-1NDK seemed principally due to a serine at position 193 instead of to an aspartic acid (Asp193) in human CXCR4. Likewise, a mutation of Asp187 prevented usage of CXCR4 by FIVPET. Different mutations of Asp193, including its replacement by a glutamic acid, markedly reduced or suppressed the activity of CXCR4 for HIV-1NDK infection, indicating that the negative charge was not the only requirement. Mutations of Asp193 and of arginine residues (Arg183 and Arg188) of CXCR4 reduced the efficiency of HIV-1 infection for all HIV-1 strains tested. Other ECL2 mutations tested had strain-specific effects or no apparent effect on HIV-1 infection. The ECL2 mutants allowed us to identify residues contributing to the epitope of the 12G5 monoclonal antibody. Overall, residues with different charges and interspersed in ECL2 seem to participate in the coreceptor activity of CXCR4. This suggests that a conformational rather than linear epitope of ECL2 contributes to the HIV-1 binding site. However, certain HIV-1 and FIV strains seem to require the presence of a particular ECL2 residue.  (+info)

(5/2860) Identification of CXCR4 domains that support coreceptor and chemokine receptor functions.

The interaction of the chemokine stromal cell-derived factor 1 (SDF-1) with its receptor CXCR4 is vital for cell trafficking during development, is capable of inhibiting human immunodeficiency virus type 1 (HIV-1) utilization of CXCR4 as a coreceptor, and has been implicated in delaying disease progression to AIDS in vivo. Because of the importance of this chemokine-chemokine receptor pair to both development and disease, we investigated the molecular basis of the interaction between CXCR4 and its ligands SDF-1 and HIV-1 envelope. Using CXCR4 chimeras and mutants, we determined that SDF-1 requires the CXCR4 amino terminus for binding and activates downstream signaling pathways by interacting with the second extracellular loop of CXCR4. SDF-1-mediated activation of CXCR4 required the Asp-Arg-Tyr motif in the second intracellular loop of CXCR4, was pertussis toxin sensitive, and did not require the distal C-terminal tail of CXCR4. Several CXCR4 mutants that were not capable of binding SDF-1 or signaling still supported HIV-1 infection, indicating that the ability of CXCR4 to function as a coreceptor is independent of its ability to signal. Direct binding studies using the X4 gp120s HXB, BH8, and MN demonstrated the ability of HIV-1 gp120 to bind directly and specifically to the chemokine receptor CXCR4 in a CD4-dependent manner, using a conformationally complex structure on CXCR4. Several CXCR4 variants that did not support binding of soluble gp120 could still function as viral coreceptors, indicating that detectable binding of monomeric gp120 is not always predictive of coreceptor function.  (+info)

(6/2860) Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry?

Despite being able to use the Bonzo coreceptor as efficiently as CCR5 in transfected cells, pediatric human immunodeficiency virus type 1 isolate P6 was unable to replicate in peripheral blood mononuclear cells (PBMC) lacking the CCR5 receptor. Furthermore, its replication in wild-type PBMC was completely inhibited by inhibitors of CCR5-mediated entry. Similarly, maternal isolate M6 could use CCR5, CXCR4, Bonzo, and other coreceptors in transfected cells but was completely sensitive to inhibitors of CCR5- and CXCR4-mediated entry when grown in PBMC. The ability of these viruses to use coreceptors in addition to CCR5 and CXCR4 in vitro was, therefore, irrelevant to their drug sensitivity in primary cells. We argue that CCR5 and CXCR4 should remain the primary targets for antiviral drug development, pending strong evidence to the contrary.  (+info)

(7/2860) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry.

Chemokine receptors and related seven-transmembrane-segment (7TMS) receptors serve as coreceptors for entry of human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV) into target cells. Each of these otherwise diverse coreceptors contains an N-terminal region that is acidic and tyrosine rich. Here, we show that the chemokine receptor CCR5, a principal HIV-1 coreceptor, is posttranslationally modified by O-linked glycosylation and by sulfation of its N-terminal tyrosines. Sulfated tyrosines contribute to the binding of CCR5 to MIP-1 alpha, MIP-1 beta, and HIV-1 gp120/CD4 complexes and to the ability of HIV-1 to enter cells expressing CCR5 and CD4. CXCR4, another important HIV-1 coreceptor, is also sulfated. Tyrosine sulfation may contribute to the natural function of many 7TMS receptors and may be a modification common to primate immunodeficiency virus coreceptors.  (+info)

(8/2860) Cofactors for human immunodeficiency virus entry into primary macrophages.

Macrophages are permissive for macrophage-tropic (M-tropic) human immunodeficiency virus type 1 (HIV-1) isolates that use CCR5 for entry but are resistant to CXCR-4-dependent T cell-tropic prototype strains. M-tropic variants are critical for HIV-1 transmission, and persons who are homozygous for an inactivating mutation of CCR5 are resistant to HIV-1 in vivo. In vitro, their macrophages and lymphocytes are resistant to M-tropic strains that depend on CCR5. It is shown that CCR5-deficient macrophages are permissive for a dual-tropic isolate, 89.6, that uses CCR5, CXCR-4, and other cofactors. Entry by 89.6 into CCR5-deficient macrophages was blocked by the CXCR-4 ligand SDF and by an anti-CXCR-4 antibody. Immunoflorescence staining and reverse transcription PCR confirmed macrophage CXCR-4 expression. Thus, CXCR-4 on macrophages mediates entry of certain dual-tropic but not T cell-tropic isolates. Therefore, HIV-1 strains differ in how they utilize chemokine receptors as cofactors for entry, and the ability of a chemokine receptor to facilitate entry depends on the cell in which it is expressed.  (+info)