Genetic susceptibility to lead poisoning. (57/1642)

Major strides have been taken in the regulation of lead intoxication in the general population, but studies using genetic markers of susceptibility to environmental toxicants raise the question of whether genes can make certain individuals more vulnerable to environmental toxins such as lead. At least three polymorphic genes have been identified that potentially can influence the bioaccumulation and toxicokinetics of lead in humans. The first gene to be discussed in this review is the gene coding for delta-aminolevulinic acid dehydratase (ALAD), an enzyme of heme biosynthesis, that exists in two polymorphic forms. The resulting isozymes have been shown to affect the blood and bone lead levels in human populations. The effects of ALAD in lead intoxication have also been studied in laboratory mice that differ in the genetic dose for this enzyme. The second gene reviewed here is the vitamin D receptor (VDR) gene. The VDR is involved in calcium absorption through the gut and into calcium-rich tissues such as bone. Recent findings suggest that VDR polymorphism may influence the accumulation of lead in bone. Finally, the third gene to be discussed here that may influence the absorption of lead is the hemochromatosis gene coding for the HFE protein. The presence of mutations in the HFE gene leads to hemochromatosis in homozygotic individuals. Because of the associations between iron and lead transport, it is possible that polymorphisms in the HFE gene may also influence the absorption of lead, but this has not yet been studied. More studies will be needed to define the role of these genes in lead intoxication.  (+info)

Associations of tibial lead levels with BsmI polymorphisms in the vitamin D receptor in former organolead manufacturing workers. (58/1642)

We evaluated associations of tibial lead levels with polymorphisms in the vitamin D receptor (VDR) in 504 former organolead manufacturing workers with past exposure to lead. In this cross-sectional study, we measured tibial lead by (109)Cd K-shell X-ray fluorescence. Tibial lead was evaluated in subjects with different VDR genotypes defined using the BsmI restriction enzyme, adjusting for confounding variables. Study participants had a mean age +/- SD of 57.4 +/- 7.6 years. A total of 169 (33.5%) subjects were homozygous for the BsmI restriction site (designated bb), 251 (49.8%) were heterozygous (Bb), and 84 (16.7%) were homozygous for the absence of the restriction site (BB). Among all of the study subjects, tibial lead concentrations were low, with a mean +/- SD of 14.4 +/- 9.3 microg Pb/g bone mineral. There were only small differences in tibial lead concentrations by VDR genotype, with mean +/- SD tibial lead concentrations of 13.9 +/- 7.9, 14.3 +/- 9.5, and 15.5 +/- 11.1 in subjects with bb, Bb, and BB, respectively. In a multiple linear regression model of tibial lead concentrations, the VDR genotype modified the relation between age and tibial lead concentrations; subjects with the B allele had larger increases in tibial lead concentrations with increasing age (0.37, 0.48, and 0.67 microg/g per year of age in subjects with bb, Bb, and BB, respectively; the adjusted p-value for trend in slopes = 0.04). The VDR genotype also modified the relation between years since last exposure to lead and tibial lead concentrations. Subjects with bb evidenced an average decline in tibial lead concentrations of 0.10 microg/g per year since their last exposure to lead, whereas subjects with Bb and BB evidenced average increases of 0.03 and 0.11 microg/g per year, respectively (the adjusted p-value for trend in slopes = 0.01). Polymorphisms in the vitamin D receptor modified the relations of age and years since the last exposure to lead with tibial lead concentrations. Although controversy remains on the influence of the VDR genotype on bone mineral density, the data suggest that variant VDR alleles modify lead concentrations in bone, either by influencing lead content or calcium content or both.  (+info)

The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. (59/1642)

Transcriptional activation requires both access to DNA assembled as chromatin and functional contact with components of the basal transcription machinery. Using the hormone-bound vitamin D(3) receptor (VDR) ligand binding domain (LBD) as an affinity matrix, we previously identified a novel multisubunit coactivator complex, DRIP (VDR-interacting proteins), required for transcriptional activation by nuclear receptors and several other transcription factors. In this report, we characterize the nuclear receptor binding features of DRIP205, a key subunit of the DRIP complex, that interacts directly with VDR and thyroid hormone receptor in response to ligand and anchors the other DRIP subunits to the nuclear receptor LBD. In common with other nuclear receptor coactivators, DRIP205 interaction occurs through one of two LXXLL motifs and requires the receptor's AF-2 subdomain. Although the second motif of DRIP205 is required only for VDR binding in vitro, both motifs are used in the context of an retinoid X receptor-VDR heterodimer on DNA and in transactivation in vivo. We demonstrate that both endogenous p160 coactivators and DRIP complexes bind to the VDR LBD from nuclear extracts through similar sequence requirements, but they do so as distinct complexes. Moreover, in contrast to the p160 family of coactivators, the DRIP complex is devoid of any histone acetyltransferase activity. The results demonstrate that different coactivator complexes with distinct functions bind to the same transactivation region of nuclear receptors, suggesting that they are both required for transcription activation by nuclear receptors.  (+info)

The in vitro evaluation of 25-hydroxyvitamin D3 and 19-nor-1alpha,25-dihydroxyvitamin D2 as therapeutic agents for prostate cancer. (60/1642)

Prostate cancer cells contain specific receptors [vitamin D receptors (VDRs)] for 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), which is known to inhibit the proliferation and invasiveness of these cells. These findings support the use of 1alpha,25(OH)2D3 for prostate cancer therapy. However, because 1alpha,25(OH)2D3 can cause hypercalcemia, analogues of 1alpha,25(OH)2D3 that are less calcemic but that exhibit potent antiproliferative activity would be attractive as therapeutic agents. We investigated the effects of two different types of less calcemic vitamin D compounds, 25-hydroxyvitamin D3 [25(OH)D3] and 19-nor-1alpha,25-dihydroxyvitamin D2 [19-nor-1,25(OH)2D2], and compared their activity to 1alpha,25(OH)2D3 on (a) the proliferation of primary cultures and cell lines of human prostate cancer cells; and (b) the transactivation of the VDRs in the androgen-insensitive PC-3 cancer cell line stably transfected with VDR (PC-3/ VDR). 19-nor-1alpha,25(OH)2D2, an analogue of 1alpha,25(OH)2D3 that was originally developed for the treatment of parathyroid disease, has been shown to be less calcemic than 1alpha,25(OH)2D3 in clinical trials. Additionally, we recently showed that human prostate cells in primary culture possess 25(OH)D3-1alpha-hydroxylase, an enzyme that hydroxylates the inactive prohormone, 25(OH)D3, to the active hormone, 1alpha,25(OH)2D3, intracellularly. We reasoned that the hormone that is formed intracellularly would inhibit prostate cell proliferation in an autocrine fashion. We found that 1alpha,25(OH)2D3 and 19-nor-1alpha,25(OH)2D2 caused similar dose-dependent inhibition in the cell lines and primary cultures in the [3H]thymidine incorporation assay and that both compounds were significantly more active in the primary cultures than in LNCaP cells. Likewise, 25(OH)D3 had inhibitory effects comparable to those of 1alpha,25(OH)2D3 in the primary cultures. In the chloramphenicol acetyltransferase (CAT) reporter gene transactivation assay in PC-3/ VDR cells, 1alpha,25(OH)2D3 and 19-nor-1alpha,25(OH)2D2 caused similar increases in CAT activity between 10(-11)and 10(-9) M. Incubation of PC-3/VDR cells with 5 x 10(-8) M 25(OH)D3 induced a 29-fold increase in CAT activity, similar to that induced by 10(-8) M 1alpha,25(OH)2D3. In conclusion, our data indicate that 25(OH)D3 and 19-nor-1alpha,25(OH)2D2 represent two different solutions to the problem of hypercalcemia associated with vitamin D-based therapies: 25(OH)D3 requires the presence of 1alpha-hydroxylase, whereas 19-nor-1alpha,25(OH)2D2 does not. Both drugs are approved for human use and may be good candidates for human clinical trials in prostate cancer.  (+info)

The human transcription factor IID subunit human TATA-binding protein-associated factor 28 interacts in a ligand-reversible manner with the vitamin D(3) and thyroid hormone receptors. (61/1642)

Using coexpression in COS cells, we have identified novel interactions between the human TATA-binding protein-associated factor 28 (hTAF(II)28) component of transcription factor IID and the ligand binding domains (LBDs) of the nuclear receptors for vitamin D3 (VDR) and thyroid hormone (TRalpha). Interaction between hTAF(II)28 and the VDR and TR LBDs was ligand-reversible, whereas no interactions between hTAF(II)28 and the retinoid X receptors (RXRs) or other receptors were observed. TAF(II)28 interacted with two regions of the VDR, a 40-amino acid region spanning alpha-helices H3-H5 and alpha-helix H8. Interactions were also observed with the H3-H5 region of the TRalpha but not with the equivalent highly related region of the RXRgamma. Fine mapping using RXR derivatives in which single amino acids of the RXRgamma LBD have been replaced with their VDR counterparts shows that the determinants for interaction with hTAF(II)28 are located in alpha-helix H3 and are not identical to those previously identified for interactions with hTAF(II)55. We also describe a mutation in the H3-H5 region of the VDR LBD, which abolishes transactivation, and we show that interaction of hTAF(II)28 with this mutant is no longer ligand-reversible.  (+info)

Antagonistic action of a 25-carboxylic ester analogue of 1alpha, 25-dihydroxyvitamin D3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators. (62/1642)

A 25-carboxylic ester analogue of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)), ZK159222, was described as a novel type of antagonist of 1alpha,25-(OH)(2)D(3) signaling. The ligand sensitivity of ZK159222, in facilitating complex formation between 1alpha,25-(OH)(2)D(3) receptor (VDR) and the retinoid X receptor (RXR) on a 1alpha,25-(OH)(2)D(3) response element (VDRE), was approximately 7-fold lower when compared with 1alpha,25-(OH)(2)D(3). However, ZK159222 was not able to promote a ligand-dependent interaction of the VDR with the coactivator proteins SRC-1, TIF2, and RAC3, neither in solution nor in a complex with RXR on DNA. Functional analysis in HeLa and COS-7 cells demonstrated a 10-100-fold lower ligand sensitivity for ZK159222 than for 1alpha, 25-(OH)(2)D(3) and, most interestingly, a potency that was drastically reduced compared with 1alpha,25-(OH)(2)D(3). A cotreatment of 1alpha,25-(OH)(2)D(3) with a 100-fold higher concentration of ZK159222 resulted in a prominent antagonistic effect both in functional in vivo and in in vitro assays. These data suggest that the antagonistic action of ZK159222 is due to a lack of ligand-induced interaction of the VDR with coactivators with a parallel ligand sensitivity, which is sufficient for competition with the natural hormone for VDR binding.  (+info)

Interaction of the effects between vitamin D receptor polymorphism and exercise training on bone metabolism. (63/1642)

Bone metabolism is strongly influenced by heredity and environmental factors. To investigate interaction of the effects between vitamin D receptor polymorphism by Fok I and resistance exercise training on bone metabolism, young male subjects with FF genotype (F, n = 10) and Ff or ff genotypes (f, n = 10) followed 1 mo of weight training, and changes in bone metabolism were compared. An additional 14 subjects served as a sedentary control. Biomarkers of bone formation, bone-specific alkaline phosphatase, and osteocalcin were significantly increased by training in both F and f groups. 1, 25-Dihydroxyvitamin D(3), known to upregulate bone formation, was also increased by the training in the f but not in the F group. Bone resorption assessed by cross-linked NH(2)-terminal telopeptide of type I collagen was significantly suppressed by the training, and the decrease in F was greater and longer lasting than that in f group. In conclusion, stimulation of bone formation and suppression of bone resorption occurred within 1 mo in young men. Despite a significant increase in 1,25-dihydroxyvitamin D(3) in the f group but not in the F group, the response of bone metabolism to the training in the F was similar to or greater than that in f group, suggesting a functional difference between vitamin D receptor genotypes f and F.  (+info)

Binding of liganded vitamin D receptor to the vitamin D receptor interacting protein coactivator complex induces interaction with RNA polymerase II holoenzyme. (64/1642)

Because the vitamin D receptor interacting protein (DRIP) coactivator complex shares components with the RNA polymerase II (Pol II) holoenzyme complex, we tested whether the two protein complexes associate in cellular extracts. On initial purification steps, the DRIP complex copurified with the Pol II holoenzyme. Pol II was found to bind to the vitamin D receptor in a ligand-dependent fashion when either nuclear extracts or partially purified preparations were used as sources of DRIP and Pol II holoenzyme. A subpopulation of holoenzyme complexes bound to the receptor because BRCA1, which associates with the Pol II holoenzyme, did not associate with the liganded receptor, and only in certain of the holoenzyme- and DRIP-containing fractions did Pol II bind to the liganded receptor. Immunoprecipitation experiments revealed that the DRIP complex was not pre-associated with the Pol II holoenzyme, but the interaction between these two complexes was induced only in the presence of receptor and ligand. These data support a model in which the activation of transcription by hormone-bound receptor requires binding to the DRIP coactivator, and this induced ternary complex can then bind to the Pol II holoenzyme to activate transcription.  (+info)