Ig alpha and Ig beta are required for efficient trafficking to late endosomes and to enhance antigen presentation. (41/2715)

The B cell Ag receptor (BCR) is a multimeric complex, containing Ig alpha and Ig beta, capable of internalizing and delivering specific Ags to specialized late endosomes, where they are processed into peptides for loading onto MHC class II molecules. By this mechanism, the presentation of receptor-selected epitopes to T cells is enhanced by several orders of magnitude. Previously, it has been reported that, under some circumstances, either Ig alpha or Ig beta can facilitate the presentation of Ags. However, we now demonstrate that if these Ags are at low concentrations and temporally restricted, both Ig alpha and Ig beta are required. When compared with the BCR, chimeric complexes containing either chain alone were internalized but failed to access the MHC class II-enriched compartment (MIIC) or induce the aggregation and fusion of its constituent vesicles. Furthermore, Ig alpha/Ig beta complexes in which the immunoreceptor tyrosine-based activation motif tyrosines of Ig alpha were mutated were also incapable of accessing the MIIC or of facilitating the presentation of Ag. These data indicate that both Ig alpha and Ig beta contribute signaling, and possibly other functions, to the BCR that are necessary and sufficient to reconstitute the trafficking and Ag-processing enhancing capacities of the intact receptor complex.  (+info)

CD19 amplifies B lymphocyte signal transduction by regulating Src-family protein tyrosine kinase activation. (42/2715)

Ligation of the B cell Ag receptor (BCR) induces cellular activation by stimulating Src-family protein tyrosine kinases (PTKs) to phosphorylate members of the BCR complex. Subsequently, Src-family PTKs, particularly Lyn, are proposed to phosphorylate and bind CD19, a cell-surface costimulatory molecule that regulates mature B cell activation. Herein, we show that B cells from CD19-deficient mice have diminished Lyn kinase activity and BCR phosphorylation following BCR ligation. Tyrosine phosphorylation of other Src-family PTKs was also decreased in CD19-deficient B cells. In wild-type B cells, CD19 was constitutively complexed with Vav, Lyn, and other Src-family PTKs, with CD19 phosphorylation and its associations with Lyn and Vav increased after BCR ligation. Constitutive CD19/Lyn/Vav complex signaling may therefore be responsible for the establishment of baseline signaling thresholds in B cells before Ag receptor ligation, in addition to accelerating signaling following BCR engagement or other transmembrane signals. In vitro kinase assays using purified CD19 and purified Lyn revealed that the kinase activity of Lyn was significantly increased when coincubated with CD19. Thus, constitutive and induced CD19/Lyn complexes are likely to regulate basal signaling thresholds and BCR signaling by amplifying the kinase activity of Lyn and other Src-family PTKs. These in vivo and in vitro findings demonstrate a novel mechanism by which CD19 regulates signal transduction in B lymphocytes. The absence of this CD19/Src-family kinase amplification loop may account for the hyporesponsive phenotype of CD19-deficient B cells.  (+info)

MHC class II antigen processing in B cells: accelerated intracellular targeting of antigens. (43/2715)

Processing and presentation by Ag-specific B cells is initiated by Ag binding to the B cell Ag receptor (BCR). Cross-linking of the BCR by Ag results in a rapid targeting of the BCR and bound Ag to the MHC class II peptide loading compartment (IIPLC). This accelerated delivery of Ag may be essential in vivo during periods of rapid Ag-driven B cell expansion and T cell-dependent selection. Here, we use both immunoelectron microscopy and a nondisruptive protein chemical polymerization method to define the intracellular pathway of the targeting of Ags by the BCR. We show that following cross-linking, the BCR is rapidly transported through transferrin receptor-containing early endosomes to a LAMP-1+, beta-hexosaminadase+, multivesicular compartment that is an active site of peptide-class II complex assembly, containing both class II-invariant chain complexes in the process of invariant chain proteolytic removal as well as mature peptide-class II complexes. The BCR enters the class II-containing compartment as an intact mIg/Igalpha/Igbeta complex bound to Ag. The pathway by which the BCR targets Ag to the IIPLC appears not to be identical to that by which Ags taken up by fluid phase pinocytosis traffick, suggesting that the accelerated BCR pathway may be specialized and potentially independently regulated.  (+info)

T cell autoimmunity in Ig transgenic mice. (44/2715)

Autoantibodies directed at a diverse group of proteins of the U1/Sm ribonucleoprotein (snRNP) are characteristic of systemic lupus erythematosus and are found in the MRL murine model of this disease. This study examines the role of transgenic B lymphocytes in the regulation of autoreactive T cells to the snRNP autoantigen. Transgenic mice were developed bearing an Ig heavy chain gene specific for the D protein component of murine snRNP. B lymphocytes in these mice are neither deleted nor anergic and are of an immature (heat-stable Aghigh) phenotype. T lymphocytes from anti-snRNP transgenic mice were examined using a recombinant form of the D protein of the murine snRNP complex. Our results revealed that transgenic anti-snRNP B cell APCs stimulated CD4 T cells from wild-type C57BL/6 and MRL lpr/lpr mice, while nonspecific APCs failed to stimulate CD4 T cells. This study demonstrates that autoreactive T cells are not deleted from wild-type mice, although their activation is facilitated by autoantigen-specific APCs. The snRNP-reactive T cells in C57BL/6 transgenic mice are tolerized, in contrast to those T cells from MRL lpr/lpr transgenic mice. These studies implicate a role for autoreactive B lymphocytes in the in vivo activation and/or diversification of autoreactive T cells.  (+info)

IgG1 production by sIgD+ splenic B cells and peritoneal B-1 cells in response to IL-5 and CD38 ligation. (45/2715)

CD38 ligation on mouse B cells by CS/2, an anti-mouse CD38 mAb, induces proliferation, IL-5 receptor alpha chain expression and tyrosine phosphorylation of Bruton's tyrosine kinase. Furthermore, stimulation of splenic B cells with IL-5 together with CS/2 induces Blimp-1 expression and differentiation into Ig-producing cells. Here we examined the role of IL-5 in IgG1 and IgA production by B cells isolated from the spleen and peritoneal cavity. CD38 recognized by CS/2 was expressed in the follicular mantle B cells surrounding the germinal center, sIgD+ splenic B cells and peritoneal B cells. IL-5 induced IgG1 production in splenic sIgD+ B cells stimulated with CS/2, while it was ineffective to induce IgA production. Among the various cytokines tested, only IL-5 had a synergistic effect on IgG1 production with CS/2. IL-5 could induce the generation of S micro-Sgamma1 reciprocal recombination DNA products in CS/2-stimulated B cells. IL-4 was ineffective to induce either micro-gamma1 switch recombination or IgG1 secretion with CS/2, demonstrating that IL-5 promotes both micro-gamma1 switch recombination and IgG1 secretion in an IL-4-independent manner. The peritoneal B-2 cells exhibited both IgG1 and IgA production in response to IL-5 plus CS/2, while B-1 cells produced IgG1. These results imply that the pattern of differentiation to Ig-producing cells seen with peritoneal B cells is not identical to the pattern seen with splenic B cells and that peritoneal B-2 cells contain precursors of IgA-producing cells responding to IL-5 plus CS/2.  (+info)

Death signals from the B cell antigen receptor target mitochondria, activating necrotic and apoptotic death cascades in a murine B cell line, WEHI-231. (46/2715)

B cell antigen receptor (BCR)-mediated cell death has been proposed as a mechanism for purging the immune repertoire of anti-self specificities during B cell differentiation in bone marrow. Mitochondrial alterations and activation of caspases are required for certain aspects of apoptotic cell death, but how the mitochondria and caspases contribute to BCR-mediated cell death is not well understood. In the present study, we used the mouse WEHI-231 B cell line to demonstrate that mitochondrial alterations and activation of caspases are indeed participants in BCR-mediated cell death. The peptide inhibitor of caspases, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), blocked cleavage of poly(ADP-ribose) polymerase and various manifestation of nuclear apoptosis such as nuclear fragmentation, hypodiploidy and DNA fragmentation, indicating that signals from the BCR induced the activation of caspases. In addition, z-VAD-fmk delayed apoptosis-associated changes in cellular reduction-oxidation potentials as determined by hypergeneration of superoxide anion, as well as exposure of phosphatidylserine residues in the outer plasma membrane. By contrast, although z-VAD-fmk retarded cytolysis, it was incapable of preventing disruption of the plasma membrane even under the same condition in which it completely blocked nuclear apoptosis. Mitochondrial membrane potential loss was also not blocked by z-VAD-fmk. Bongkrekic acid, a specific inhibitor of mitochondrial permeability transition pores, suppressed not only the mitochondrial membrane potential but also the change of plasma membrane permeability. Overexpression of Bcl-xL prevented mitochondrial dysfunction, nuclear apoptosis and membrane permeability cell death triggered by BCR signal transduction. These observations indicate that death signals from BCR may first cause mitochondrial alterations followed by activation of both necrotic and apoptotic cascades.  (+info)

Analysis of tyrosine phosphorylation-dependent interactions between stimulatory effector proteins and the B cell co-receptor CD22. (47/2715)

The B cell-restricted transmembrane glycoprotein CD22 is rapidly phosphorylated on tyrosine in response to cross-linking of the B cell antigen receptor, thereby generating phosphotyrosine motifs in the cytoplasmic domain which recruit intracellular effector proteins that contain Src homology 2 domains. By virtue of its interaction with these effector proteins CD22 modulates signal transduction through the B cell antigen receptor. To define further the molecular mechanism by which CD22 mediates its co-receptor function, phosphopeptide mapping experiments were conducted to determine which of the six tyrosine residues in the cytoplasmic domain are involved in recruitment of the stimulatory effector proteins phospholipase Cgamma (PLCgamma), phosphoinositide 3-kinase (PI3K), Grb2, and Syk. The results obtained indicate that the protein tyrosine kinase Syk interacts with multiple CD22-derived phosphopeptides in both immunoprecipitation and reverse Far Western assays. In contrast, the Grb2.Sos complex was observed to bind exclusively to the fourth phosphotyrosine motif (Y828ENV) from CD22 and does so via a direct interaction based on Far Western and reverse Far Western blotting. Although both PLCgamma and PI3K were observed to bind to multiple phosphopeptides in precipitation experiments, subsequent studies using reverse Far Western blot analysis demonstrated that only the carboxyl-terminal phosphopeptide of CD22 (Y863VTL) binds directly to either one. This finding suggests that PLCgamma and PI3K may be recruited to CD22 either through a direct interaction with Tyr863 or indirectly through an association with one or more intermediate proteins.  (+info)

Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. (48/2715)

Chromosome translocations involving antigen receptor loci are a genetic hallmark of non-Hodgkin's lymphomas in humans. Most commonly, these translocations result in juxtaposition of the immunoglobulin heavy-chain (IgH) locus with one of several cellular proto-oncogenes, leading to deregulated oncogene expression. The V(D)J recombinase, which mediates physiologic rearrangements of antigen receptor genes, may play a mechanistic role in some lymphoma translocations, although evidence is indirect. A high incidence of B-lineage lymphomas has been observed in mice with severe combined immunodeficiency (SCID) and p53-null mutations. We show that these tumors are characteristic of the pro-B-cell stage of development and that they harbor recurrent translocations involving chromosomes 12 and 15. Fluorescence in situ hybridization (FISH) shows retention of IgH sequences on the derivative chromosome 12, implying that breakpoints involve the IgH locus. Pro-B-cell lymphomas were suppressed in SCID p53(-/-) mice by a Rag-2-null mutation, demonstrating that DNA breaks generated during V(D)J recombination are required for oncogenic transformation, and suggesting that t(12;15) arise during attempted IgH rearrangement in pro-B cells. These studies indicate that the oncogenic potential inherent in antigen receptor diversification is controlled in vivo by efficient rejoining of DNA ends generated during V(D)J recombination and an intact cellular response to DNA damage.  (+info)