(1/261) TCR binding to peptide-MHC stabilizes a flexible recognition interface.

The binding of TCRs to their peptide-MHC ligands is characterized by a low affinity, slow kinetics, and a high degree of cross-reactivity. Here, we report the results of a kinetic and thermodynamic analysis of two TCRs binding to their peptide-MHC ligands, which reveal two striking features. First, significant activation energy barriers must be overcome during both association and dissociation, suggesting that conformational adjustments are required. Second, the low affinity of binding is a consequence of highly unfavorable entropic effects, indicative of a substantial reduction in disorder upon binding. This is evidence that the TCR and/or peptide-MHC have flexible binding surfaces that are stabilized upon binding. Such conformational flexibility, which may also be a feature of primary antibodies, is likely to contribute to cross-reactivity in antigen recognition.  (+info)

(2/261) Partial block in B lymphocyte development at the transition into the pre-B cell receptor stage in Vpre-B1-deficient mice.

The surrogate light chain (SL) is composed of two polypeptides, Vpre-B and lambda5. In large pre-BII cells the SL chain associates with Ig mu heavy chain (muH) to form the pre-B cell receptor (pre-BCR). In mice there are two Vpre-B genes which are 98% identical within the coding regions. The two genes are co-expressed at the RNA level and encode functional proteins that can assemble with lambda5. However, it is not known whether both gene products serve the same function in vivo. Here we have established mice that lack the Vpre-B1 gene (VpreB1(-/-)), but still express the Vpre-B2 gene, both as RNA and protein. In Vpre-B1(-/-) mice, the bone marrow cellularity and the percentage of B220+ cells is normal. However, among the B220+ cells, the percentage of pre-BI cells is increased, and the percentage of pre-BII and immature B cells is slightly decreased, suggesting that the lack of Vpre-B1 causes a partial block at the transition from pre-BI to pre-BII cells, i.e. into the pre-BCR stage. The number of cells that produce a functional pre-BCR is thus lower, but the cells that reach this stage are normal as they can be expanded by proliferation and then differentiate into more mature cells. The spleens of Vpre-B1 homozygous mutant mice show normal numbers of B and T lymphocytes. Moreover, the Ig loci are allelicly excluded and the homozygous mutant mice respond with normal levels of antigen-specific antibodies to T-dependent antigens. These results demonstrate that VpreB2 alone is capable of supporting B lymphocyte development in the bone marrow and can give rise to immuno-competent cells in the periphery.  (+info)

(3/261) Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.

The pattern of somatic mutations of shark and frog Ig is distinct from somatic hypermutation of Ig in mammals in that there is a bias to mutate GC base pairs and a low frequency of mutations. Previous analysis of the new antigen receptor gene in nurse sharks (NAR), however, revealed no bias to mutate GC base pairs and the frequency of mutation was comparable to that of mammalian IgG. Here, we analyzed 1023 mutations in NAR and found no targeting of the mechanism to any particular nucleotide but did obtain strong evidence for a transition bias and for strand polarity. As seen for all species studied to date, the serine codon AGC/T in NAR was a mutational hotspot. The NAR mutational pattern is most similar to that of mammalian IgG and furthermore both are strikingly akin to mutations acquired during the neutral evolution of nuclear pseudogenes, suggesting that a similar mechanism is at work for both processes. In yeast, most spontaneous mutations are introduced by the translesion synthesis DNA polymerase zeta (REV3) and in various DNA repair-deficient backgrounds transitions were more often REV3-dependent than were transversions. Therefore, we propose a model of somatic hypermutation where DNA polymerase zeta is recruited to the Ig locus. An excess of DNA glycosylases in germinal center reactions may further enhance the mutation frequency by a REV3-dependent mutagenic process known as imbalanced base excision repair.  (+info)

(4/261) The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2.

V(D)J recombination is initiated by the specific binding of the RAG1-RAG2 (RAG1/2) complex to the heptamer-nonamer recombination signal sequences (RSS). Several steps of the V(D)J recombination reaction can be reconstituted in vitro with only RAG1/2 plus the high-mobility-group protein HMG1 or HMG2. Here we show that the RAG1 homeodomain directly interacts with both HMG boxes of HMG1 and HMG2 (HMG1,2). This interaction facilitates the binding of RAG1/2 to the RSS, mainly by promoting high-affinity binding to the nonamer motif. Using circular-permutation assays, we found that the RAG1/2 complex bends the RSS DNA between the heptamer and nonamer motifs. HMG1,2 significantly enhance the binding and bending of the 23RSS but are not essential for the formation of a bent DNA intermediate on the 12RSS. A transient increase of HMG1,2 concentration in transfected cells increases the production of the final V(D)J recombinants in vivo.  (+info)

(5/261) Developmental neurobiology: a genetic Cheshire cat?

In the wake of evidence that essential neurogenic processes might involve aspects of DNA rearrangement, recent discoveries about the unusual arrangement of genes encoding neuronal adhesion molecules known as protocadherins are very intriguing. But is this just a coincidence?  (+info)

(6/261) Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3.

E2A, HEB, E2-2, and daughterless are basic helix-loop-helix (bHLH) proteins that play key roles in multiple developmental pathways. The DNA binding activity of E2A, HEB, and E2-2 is regulated by a distinct class of inhibitor HLH proteins, the Id gene products. Here, we show that Id3 is required for major histocompatability (MHC) class I- and class II-restricted thymocyte positive selection. Additionally, H-Y TCR-mediated negative selection is severely perturbed in Id3 null mutant mice. Finally, we show that E2A and Id3 interact genetically to regulate thymocyte development. These observations identify the HLH inhibitory protein Id3 as an essential component required for proper thymocyte maturation.  (+info)

(7/261) The evolution of vertebrate antigen receptors: a phylogenetic approach.

Classical T cells, those with alpha beta T-cell receptors (TCRs), are an important component of the dominant paradigm for self-nonself immune recognition in vertebrates. alpha beta T cells recognize foreign peptide antigens when they are bound to MHC molecules on the surfaces of antigen-presenting cells. gamma delta T cells bear a similar receptor, and it is often assumed that these T cells also require specialized antigen-presenting molecules for immune recognition, which we term "indirect antigen recognition." B-cell receptors, or immunoglobulins, bind directly to antigens without the help of a specialized antigen-presenting molecule. Phylogenetically, it has been assumed that T-cell receptors and the genes that encode them are a monophyletic group, and that "indirect" antigen recognition evolved before the split into two types of TCR. Recently, however, it has been proposed that gamma delta-TCRs bind directly to antigens, as do immunoglobulins (Ig's). This calls into question the null hypothesis that indirect antigen recognition is a common characteristic of TCRs and, by extension, the hypothesis that all TCR gene sequences form a monophyletic group. To determine whether alternative explanations for antigen recognition and other historical relationships among TCR genes might be possible, we performed phylogenetic analyses on amino acid sequences of the constant and variable regions which encode the basic subunits of TCR and Ig molecules. We used both maximum-parsimony and genetic distance-based methods and could find no strong support for the hypothesis of TCR monophyly. Analyses of the constant region suggest that TCR gamma or delta sequences are the most ancient, implying that the ancestral immune cell was like a modern gamma delta T cell. From this gamma delta-like ancestor arose alpha beta T cells and B cells, implying that indirect antigen recognition is indeed a derived property of alpha beta-TCRs. Analyses of the variable regions are complicated by strong selection on antigen-binding sequences, but imply that direct antigen binding is the ancestral condition.  (+info)

(8/261) Posttranscriptional regulation of Bruton's tyrosine kinase expression in antigen receptor-stimulated splenic B cells.

Mutation of Bruton's tyrosine kinase (Btk) causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency syndrome (xid). Quantitative aspects of B lymphocyte development and function have been demonstrated to depend on Btk level in vivo by using a murine transgenic model system. A sensitive intracellular immunofluorescent assay was developed to measure Btk protein on a per cell basis to test the hypothesis that its dosage is dynamically regulated during B cell development or functional responses. Marrow-derived hematopoietic stem cells, common lymphoid progenitor cells, and developing B and myeloid lineages expressed Btk protein at comparable levels. Resting peripheral B lineage cells had a significantly lower amount of Btk than marrow-derived cells in both wild-type and xid mice. Activation of the B cell antigen receptor up-regulated Btk protein level 10-fold within several hours by a phosphatidylinositol 3-kinase-dependent, posttranscriptional mechanism. In contrast, the protein level of Btk R28C in activated B lymphocytes from xid mice remained low. Bypass of the antigen receptor signaling pathways by treatment of cells with phorbol myristic acid and ionomycin rescued up-regulation of Btk protein in xid splenic B cells. These combined results suggest that certain receptor signals mediated by Btk regulate the level of expression of Btk protein in responding B lymphocytes to potentiate signal transduction. Dynamic regulation of Btk protein dosage is an additional mechanism to modulate B lymphocyte immune functions.  (+info)