Multiple conformations of native and recombinant human 5-hydroxytryptamine(2a) receptors are labeled by agonists and discriminated by antagonists. (57/616)

We have expanded previous studies with the 5-hydroxytryptamine (5-HT)(2) receptor agonist (+/-)-1-(2,5-dimethoxy-4-[(125)I]iodophenyl)-2-aminopropane [(+/-)-[(125)I]DOI] in human brain that had shown biphasic competition curves for several 5-HT(2A) receptor antagonists by using new selective antagonists of 5-HT(2A) (MDL100,907) and 5-HT(2C) (SB242084) receptors together with ketanserin and mesulergine. Autoradiographic competition experiments were performed with these antagonists in human brain regions where (+/-)-[(125)I]DOI labels almost exclusively 5-HT(2A) receptors (frontal cortex and striosomes). Furthermore, the effect of uncoupling receptor/G protein complexes on antagonist competition was studied with guanosine-5'-(beta,gamma-imido)triphosphate [Gpp(NH)p]. Competition experiments with (+/-)-[(3)H]1-(4-bromo-2,5-dimethoxyphenil)-2-aminopropane [(+/-)-[(3)H]DOB] were also performed in membranes from Chinese hamster ovary cells (CHOFA4) expressing cloned human 5-HT(2A) receptors. In both systems, ketanserin and MDL100,907 displayed biphasic competition profiles, whereas SB242084 and mesulergine competed monophasically. In absence of antagonist, 100 microM Gpp(NH)p decreased brain (+/-)-[(125)I]DOI specific binding by 40 to 50% and (+/-)-[(3)H]DOB specific binding to CHOFA4 cells by 30%. The remaining agonist-labeled uncoupled sites were still displaced biphasically by ketanserin and MDL100,907, with unaltered affinities. Saturation experiments were performed in CHOFA4 cells. (+/-)-[(3)H]DOB labeled two sites (K(d(h))= 0.8 nM, K(d(l)) = 31.22 nM). Addition of 100 microM Gpp(NH)p resulted in a single low-affinity (K(d) = 24.44 nM) site with unchanged B(max). [(3)H]5-HT showed no specific binding to 5-HT(2A) receptors. These results conform with the extended ternary complex model of receptor action that postulates the existence of partly activated receptor conformation(s) (R*) in equilibrium with the ground (R) and the activated G protein-coupled (R*G) conformations. Thus, both in human brain and CHOFA4 cells, the agonists possibly label all three conformations and ketanserin and MDL100,907 recognize with different affinities at least two of these conformations.  (+info)

Differential regulation of the mesoaccumbens circuit by serotonin 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. (58/616)

Serotonin [5-hydroxytryptamine (5-HT)] 5-HT(2A) and 5-HT(2C) receptors (5-HT(2A)Rs and 5-HT(2C)Rs), which innervate the dopamine mesoaccumbens pathway, may play an important role in the behavioral effects of cocaine. To test this hypothesis, the present study measured cocaine-evoked locomotor activity after bilateral microinjection of selective 5-HT(2A)R and 5-HT(2C)R antagonists into the ventral tegmental area (VTA) or the nucleus accumbens (NAc) shell. Locomotor activity was measured after intracranial microinjection of saline (0.2 microl/side), the selective 5-HT(2A)R antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine methanol (M100907) (0.1 or 0.3 microg. 0.2 microl(-1). side(-1)), or the selective 5-HT(2C)R antagonist 8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulfon-amido)phenyl-5-oxopentyl)]-1 ,3,8-triazaspiro[4.5]decane-2,4-dione hydrochloride (RS 102221) (0.05-0.5 microg. 0.2 microl(-1). side(-1)) followed by an injection of saline (1 ml/kg, i.p.) or cocaine (10 mg/kg, i.p.). Microinjection of M100907 (0.1-0.3 microg/side) into the VTA or RS 102221 (0.15-0.5 microg/side) into the NAc shell attenuated cocaine-induced hyperactivity in a dose-related manner. However, hyperactivity evoked by cocaine was not altered by microinjection of RS 102221 into the VTA or M100907 into the NAc shell. No changes in basal activity were observed after microinjection of M100907 or RS 102221 into either brain region. These findings are the first to demonstrate that the behavioral effects of cocaine are generated in part by activation of 5-HT(2A)Rs in the VTA and by activation of 5-HT(2C)Rs in the NAc shell. The selective regulation of the mesoaccumbens circuit by 5-HT(2A)Rs and 5-HT(2C)Rs implicates these 5-HT receptors as important in the behavioral outcomes of systemic cocaine administration.  (+info)

Characterization of the functional heterologous desensitization of hypothalamic 5-HT(1A) receptors after 5-HT(2A) receptor activation. (59/616)

Desensitization of 5-HT(1A) receptors could be involved in the long-term therapeutic effect of anxiolytic and antidepressant drugs. Pretreatment of rats with the 5-HT(2A/2C) agonist DOI induces an attenuation of hypothalamic 5-HT(1A) receptor-G(z)-protein signaling, measured as the ACTH and oxytocin responses to an injection of the 5-HT(1A) agonist 8-OH-DPAT. We characterized this functional heterologous desensitization of 5-HT(1A) receptors in rats and examined some of the mechanisms that are involved. A time course experiment revealed that DOI produces a delayed and reversible reduction of the ACTH and oxytocin responses to an 8-OH-DPAT challenge. The maximal desensitization occurred at 2 hr, and it disappeared 24 hr after DOI injection. The desensitization was dose-dependent, and it shifted the oxytocin and ACTH dose-response curves of 8-OH-DPAT to the right (increased ED(50)) with no change in their maximal responses (E(max)). The 5-HT(2A) receptor antagonist MDL 100,907 prevented the DOI-induced desensitization, indicating that 5-HT(2A) receptors mediate the effect of DOI. Analysis of the components of the 5-HT(1A) receptor-G(z)-protein signaling system showed that DOI did not alter the level of membrane-associated G(z)-proteins in the hypothalamus. Additionally, DOI did not alter the binding of [(3)H]8-OH-DPAT or the inhibition by GTPgammaS of [(3)H]8-OH-DPAT binding in the hypothalamus. In conclusion, the activation of 5-HT(2A) receptors induces a transient functional desensitization of 5-HT(1A) receptor signaling in the hypothalamus, which may occur distal to the 5-HT(1A) receptor-G(z)-protein interface.  (+info)

On the role of serotonin2A/2C receptors in the sensitization to cocaine. (60/616)

Apart from showing involvement of dopamine, recent studies also indicate a role of serotonin (5-HT) in the behavioral effects of cocaine in rodents. In the present study we investigated the role of 5-HT2A/2C receptors in the development or expression of sensitization to cocaine in rats, using ketanserin, an antagonist at these receptors. Since ketanserin also shows a high affinity for alpha1-adrenoceptors, prazosin, a comparative antagonist at those receptors was also examined. Male Wistar rats were treated repeatedly (for 5 days) with cocaine (10 mg/kg) in combination with either vehicle, or ketanserin (1-3 mg/kg) or prazosin (3 mg/kg); afterwards, on day 10, they received a challenge dose of cocaine (10 mg/kg). In another experiment, the animals were given either with vehicle or cocaine (10 mg/kg) for 5 days, and were then challenged with cocaine (10 mg/kg) in combination with vehicle, or ketanserin (1-3 mg/kg) or prazosin (3 mg/kg) on day 10. Acute administration of cocaine increased the locomotor activity in rats; that hyperactivation was inhibited by ketanserin (3 mg/kg), but not by prazosin. In animals treated repeatedly with cocaine, the locomotor hyperactivity induced by a challenge dose of the psychostimulant was ca. 2-3 times higher than that after its first administration. No difference was observed in the response to cocaine challenge in rats treated repeatedly with cocaine, ketanserin+cocaine, or prazosin+cocaine. In animals treated repeatedly with the psychostimulant, the behavioral response to a challenge dose of cocaine was dose-dependently decreased when the drug was combined with ketanserin, but not with prazosin. The above findings indicate a role of 5-HT2A/2C receptors (but not alpha1-adrenoceptors) in the acute locomotor hyperactivity, as well as in the expression (but not development) of cocaine sensitization. Since chronic use of cocaine by humans may lead to psychoses or craving for this drug of abuse, our findings also seem to indicate possible importance of 5-HT2A/2C receptor antagonists in the therapy of cocaine addiction.  (+info)

Differences in rapid desensitization of 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptor-mediated phospholipase C activation. (61/616)

The serotonin (5-HT)2A and 5-HT2C receptors share a high degree of sequence homology and have very similar pharmacological profiles. Although it is generally believed that the cellular signal transduction mechanisms activated by these receptors are indistinguishable, recent data suggest significant differences in their signaling cascades. In this study we explored differences in the characteristics and mechanisms of rapid desensitization between the 5-HT2A and 5-HT2C receptor systems. For both receptor systems, pretreatment with 5-HT reduced the ability of a maximal concentration of 5-HT to stimulate phospholipase C-mediated inositol phosphate accumulation by about 65%, although the 5-HT2C receptor system was more sensitive to the desensitizing stimulus. Differences in the concentration dependence of the rate constant for desensitization (k(des)) suggested different mechanisms of desensitization for the 5-HT2A and 5-HT2C receptor systems. At very high receptor occupancy (>99%), the responsiveness of the 5-HT2A, but not the 5-HT2C, receptor system returned to control levels despite the continued presence of the agonist. This resensitization was dependent upon the activity of protein kinase C (PKC). Agonist-induced desensitization of the 5-HT2A, but not the 5-HT2C, receptor system was reduced by the PKC inhibitors staurosporine and bisindolylmaleimide, and by down-regulation of PKC. In addition, inhibitors of calmodulin (W-7) or of calmodulin-dependent protein kinase II, reduced 5-HT2A, but not 5-HT2C, desensitization. Desensitization of the 5-HT2C, but not the 5-HT2A, receptor system was dependent on G protein receptor kinase activity. These data further emphasize the major differences in the signaling systems coupled to 5-HT2A/2C receptors.  (+info)

5-Hydroxytryptamine-inhibiting property of Feverfew: role of parthenolide content. (62/616)

AIM: To study the mechanism of antimigraine activity of Tanacetum parthenium (Feverfew), its extracts and parthenolide, a component of Feverfew, by observing their effect on 5-HT storage and release, and stimulation of 5-HT2B and 5-HT2A receptors. Also to standardize a dosage form of Feverfew with respect to its parthenolide content. METHODS: Isometric responses to 5-HT and an indirect acting serotonergic, d-fenfluramine, were obtained on rat fundus and ileum. In one set of experiments the effect of dichloromethane extract of Feverfew and parthenolide was observed on the above. The extract was then thermally degraded upto 10%, 23%, and 33% with respect to its parthenolide content by keeping at 60 degrees C and 75% relative humidity and the experiments were repeated. In another set of experiments rats were fed with 20 mg/kg Feverfew powder (equivalent to a human dose of 500 micrograms parthenolide per day) for 30 d or were i.p. injected with parthenolide (23.4 micrograms/day) for 7 d. In the same set of experiments one group of rats were fed with 15% and 77% degraded Feverfew powder in the same dose as mentioned above. After 30 days the effects of the above were observed on 5-HT and d-fenfluramine. Feverfew was specially formulated and tested for stability under accelerated conditions. RESULTS: Parthenolide (1 x 10(-5) mol/L) non-competitively antagonised the effects of d-fenfluramine but had no significant effect on 5-HT2B and 5-HT2A receptors in rat fundus and ileum at 30 min which turned significant on increasing the incubation time to 1.5 h, in rat fundus. Parthenolide (5 x 10(-5) mol/L) followed the same trend. However, Feverfew extract (1 x 10(-5) mol/L) potently and directly blocked 5-HT2B and 5-HT2A receptors and neuronally released 5-HT. At 5 x 10(-5) mol/L the extract potently and irreversibly blocked the above. Both parthenolide and Feverfew extract showed a time-dependency in their action. The extract when degraded thermally upto 10% could significantly block the 5-HT receptors and neuronal release of 5-HT, however, on further degradation it lost its inhibitory capacity markedly. Similar results were observed in rats fed orally with undergraded and degraded Feverfew powder and injected i.p. with parthenolide. Feverfew powder was more effective than any of its extracts or pure parthenolide. CONCLUSION: Feverfew powder is more potent than any of its extract or parthenolide alone in its antiserotonergic activity. Degraded Feverfew extracts show a marked decrease in their antiserotonergic activity. With thermally degraded Feverfew powder containing less contents of parthenolide no built-up antiserotonergic responses were observed after one month. This ascertains that Feverfew should be dispensed in a properly stabilized form wherein its parthenolide content is not degraded to less than 90% of the original content.  (+info)

Enhanced contraction to 5-hydroxytryptamine is not due to "unmasking" of 5-hydroxytryptamine(1b) receptors in the mesenteric artery of the deoxycorticosterone acetate-salt rat. (63/616)

5-Hydroxytryptamine(1B) (5-HT(1B)) receptors have been implicated in mediating arterial contraction to 5-HT. Additionally, the 5-HT(1B) receptor has been reported to be "unmasked" by depolarizing stimuli. We hypothesized that 5-HT(1B) receptors in arteries from hypertensive animals, arteries reported to have a depolarized resting membrane potential in smooth muscle cells, are unmasked and participate in the supersensitivity observed to 5-HT in hypertension. We used the isolated tissue bath apparatus and examined the response of superior mesenteric arteries from normotensive sham and hypertensive deoxycorticosterone acetate (DOCA)-salt rats. The 5-HT(1B) agonists CP93129 and sumatriptan (10(-9) to 10(-5) mol/L) caused a maximal contraction (50+/-12% of phenylephrine [10(-5) mol/L] contraction) in arteries from DOCA-salt rats; no contraction was observed in arteries from normotensive rats. The 5-HT(1B) receptor antagonist GR55562 (100 nmol/L) inhibited both the 5-HT- (4-fold rightward shift) and CP93129-induced (11-fold rightward shift) contractions in mesenteric arteries from hypertensive DOCA-salt rats. In other experiments, arteries from normotensive rats were incubated with 15 mmol/L KCl, as a depolarizing stimulus, and then exposed to 5-HT and CP93129. In the presence of KCl, a small leftward shift to 5-HT was observed. However, the presence of a depolarizing stimulus was unable to produce changes in the 5-HT maximal response to resemble that of arteries from DOCA-salt rats, nor was contraction to CP93129 observed. These data support the conclusions that 5-HT(1B) receptors mediate contraction in mesenteric arteries from hypertensive rats and that this enhanced response to 5-HT is not due to membrane depolarization alone.  (+info)

Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine(2A) receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. (64/616)

The effect of endocytosis inhibitors on 5-hydroxytryptamine(2A) (5-HT(2A)) receptor desensitization and resensitization was examined in transiently transfected human embryonic kidney (HEK) 293 cells and in C6 glioma cells that endogenously express 5-HT(2A) receptors. In HEK-293 cells, 5-HT(2A) receptor desensitization was unaffected by cotransfection with a dominant-negative mutant of dynamin (DynK44A), a truncation mutant of arrestin-2 [Arr2(319-418)], or by two well-characterized chemical inhibitors of endocytosis: concanavalin A (conA) and phenylarsine oxide (PAO). In contrast, beta 2-adrenergic receptor desensitization was significantly potentiated by each of these treatments in HEK-293 cells. In C6 glioma cells, however, DynK44A, Arr2(319-418), conA, and PAO each resulted in the potentiation of 5-HT(2A) and beta-adrenergic receptor desensitization. The cell-type-specific effect of Arr2(319-418) on 5-HT(2A) receptor desensitization was not related to the level of GRK2 or GRK5 expression. Interestingly, although beta 2-adrenergic receptor resensitization was potently blocked by cotransfection with DynK44A, 5-HT(2A) receptor resensitization was enhanced, suggesting the existence of a novel cell-surface mechanism for 5-HT(2A) receptor resensitization in HEK-293 cells. In addition, Arr2(319-418) had no effect on 5-HT(2A) receptor resensitization in HEK-293 cells, although it attenuated the resensitization of the beta 2-adrenergic receptor. However, in C6 glioma cells, both DynK44A and Arr2(319-418) significantly reduced 5-HT(2A) receptor resensitization. Taken together, these results provide the first convincing evidence of cell-type-specific roles for endocytosis inhibitors in regulating GPCR activity. Additionally, these results imply that novel GRK and arrestin-independent mechanisms of 5-HT(2A) receptor desensitization and resensitization exist in HEK-293 cells.  (+info)