Signal perception and transduction: the role of protein kinases. (41/5686)

Cells can react to environmental changes by transduction of extracellular signals, to produce intracellular responses. Membrane-impermeable signal molecules are recognized by receptors, which are localized on the plasma membrane of the cell. Binding of a ligand can result in the stimulation of an intrinsic enzymatic activity of its receptor or the modulation of a transducing protein. The modulation of one or more intracellular transducing proteins can finally lead to the activation or inhibition of a so-called 'effector protein'. In many instances, this also results in altered gene expression. Phosphorylation by protein kinases is one of the most common and important regulatory mechanisms in signal transmission. This review discusses the non-channel transmembrane receptors and their downstream signaling, with special focus on the role of protein kinases.  (+info)

Pancreatic acinar AR42J cells express functional nerve growth factor receptors. (42/5686)

The factors regulating the differentiation of the endocrine cells of the pancreas are still unknown. In previous studies, we have demonstrated that, like neurones, various beta-cell lines express functional neurotrophin receptors. Moreover, Trk-A, the nerve growth factor (NGF) high-affinity receptor, is expressed in vivo in mature rat islets and early during development in the pancreatic ductal network that represents the source of putative stem cells. Rat pancreatic AR42J cells possess both exocrine and neuroendocrine properties. Recent studies have shown that these cells can differentiate either into acinar cells or into insulin-expressing cells. In this study, we demonstrate that AR42J cells, in common with the embryonic ductal cells, do express Trk-A. Moreover, on treatment with NGF, Trk-A is phosphorylated and early responsive genes such as NGFI-A, c-fos and c-jun are induced. These results clearly show that the Trk-A receptor expressed in AR42J is functional. AR42J cells provide a model system with which to study the role of NGF in the development of the pancreatic cells.  (+info)

Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. (43/5686)

Orf virus, a member of the poxvirus family, produces a pustular dermatitis in sheep, goats, and humans. The lesions induced after infection with orf virus show extensive proliferation of vascular endothelial cells, dilation of blood vessels and dermal swelling. An explanation for the nature of these lesions may lie in the discovery that orf virus encodes an apparent homolog of the mammalian vascular endothelial growth factor (VEGF) family of molecules. These molecules mediate endothelial cell proliferation, vascular permeability, angiogenesis, and lymphangiogenesis via the endothelial cell receptors VEGFR-1 (Flt1), VEGFR-2 (KDR/Flk1), and VEGFR-3 (Flt4). The VEGF-like protein of orf virus strain NZ2 (ORFV2-VEGF) is most closely related in primary structure to VEGF. In this study we examined the biological activities and receptor specificity of the ORFV2-VEGF protein. ORFV2-VEGF was found to be a disulfide-linked homodimer with a subunit of approximately 25 kDa. ORFV2-VEGF showed mitogenic activity on bovine aortic and human microvascular endothelial cells and induced vascular permeability. ORFV2-VEGF was found to bind and induce autophosphorylation of VEGFR-2 and was unable to bind or activate VEGFR-1 and VEGFR-3, but bound the newly identified VEGF165 receptor neuropilin-1. These results indicate that, from a functional viewpoint, ORFV2-VEGF is indeed a member of the VEGF family of molecules, but is unique, however, in that it utilizes only VEGFR-2 and neuropilin-1.  (+info)

Exposure to hyperoxia decreases the expression of vascular endothelial growth factor and its receptors in adult rat lungs. (44/5686)

Exposure to high levels of inspired oxygen leads to respiratory failure and death in many animal models. Endothelial cell death is an early finding, before the onset of respiratory failure. Vascular endothelial growth factor (VEGF) is highly expressed in the lungs of adult animals. In the present study, adult Sprague-Dawley rats were exposed to >95% FiO2 for 24 or 48 hours. Northern blot analysis revealed a marked reduction in VEGF mRNA abundance by 24 hours, which decreased to less than 50% of control by 48 hours. In situ hybridization revealed that VEGF was highly expressed in distal airway epithelial cells in controls but disappeared in the oxygen-exposed animals. Immunohistochemistry and Western blot analyses demonstrated that VEGF protein was decreased at 48 hours. TUNEL staining demonstrated the presence of apoptotic cells coincident with the decline in VEGF. Abundance of VEGF receptor mRNAs (Flt-1 and KDR/Flk) decreased in the late time points of the study (48 hours), possibly secondary to the loss of endothelial cells. We speculate that VEGF functions as a survival factor in the normal adult rat lung, and its loss during hyperoxia contributes to the pathophysiology of oxygen-induced lung damage.  (+info)

Kinases involved in MSP/RON signaling. (45/5686)

Macrophage stimulating protein (MSP) belongs to the plasminogen-related kringle domain family. In addition to stimulation of macrophages, MSP acts on other cell types including epithelial and hematopoietic cells. The MSP receptor is a transmembrane tyrosine kinase called RON in humans and STK in mice. MSP/receptor interaction induces activation of signal transduction pathways that mediate MSP biological activities. Cytoplasmic kinases are intracellular messengers occupying an important role in signal transduction. We have identified kinases that participate in RON signaling. In addition to previously identified involvement of phosphatidylinositol 3-kinase (PI3-K), JNK, and MAPK, we found that FAK, c-Src, and AKT are rapidly and transiently activated by MSP. FAK, MAPK, and c-Src are involved in MSP-induced cell proliferation. MAPK and c-Src are components of one signal transduction cascade, and MAPK is downstream of c-Src. FAK also regulates MSP-induced cell growth, but via a path different from c-Src/MAPK. AKT kinase is a component of a separate branch of the RON/PI3-K pathway that mediates the MSP anti-apoptotic effect on epithelial cells. PI3-K regulates MSP-induced adhesion and motility but via downstream components different from AKT. Thus, occupancy of the RON receptor by MSP activates distinct signal transduction pathways that mediate several cellular responses.  (+info)

Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. (46/5686)

Flt3 ligand (FL) is an early-acting potent co-stimulatory cytokine that regulates proliferation and differentiation of a number of blood cell lineages. Its receptor Flt3/Flk2 belongs to class III receptor tyrosine kinases that also include the receptors for colony-stimulating factor 1, Steel factor, and platelet-derived growth factor. Using CSF-1 receptor/Flt3 chimeras, two groups have characterized some of the post-receptor signaling events and substrate specificity of murine Flt3 receptor. However, there are few studies on the signaling pathway through human Flt3. We examined human Flt3 signaling pathways in a murine IL-3-dependent hematopoietic cell line Baf3, which stably expresses full-length human Flt3 receptor. This subline proliferates in response to human FL. Like the chimeric murine Flt3, human Flt3 undergoes autophosphorylation, associates with Grb2, and leads to tyrosine phosphorylation of Shc on ligand binding. We found that SHP-2, but not SHP-1, is tyrosine-phosphorylated by FL stimulation. SHP-2 does not associate with Flt3, but binds directly to Grb2. SHIP is also tyrosine-phosphorylated and associates with Shc after FL simulation. We further examined the downstream signaling pathway. FL transiently activates MAP kinase. This activation could be blocked by PD98059, a specific MEK inhibitor. PD98059 also blocked cell proliferation in response to FL. These results demonstrate that SHP-2 and SHIP are important components in the human Flt3 signaling pathway and suggest that SHP-2 and SHIP, by forming complexes with adapter proteins Grb2 and Shc, may modulate MAP kinase activation, which may be necessary for the mitogenic signaling of Flt3.  (+info)

Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases. (47/5686)

In Drosophila, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have on their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. This region has a characteristic spacing of ten cysteines, which has also been identified in FrzB (a secreted antagonist of Wnt signaling) and Smoothened (another 7TMR, which is involved in the hedgehog signalling pathway). We have identified, using BLAST, sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development. These include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2. At present, the ligands for these developmental tyrosine kinases are unknown. Our results suggest that Wnt-like ligands may bind to these developmental tyrosine kinases  (+info)

Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. (48/5686)

In higher plants, organogenesis occurs continuously from self-renewing apical meristems. Arabidopsis thaliana plants with loss-of-function mutations in the CLAVATA (CLV1, 2, and 3) genes have enlarged meristems and generate extra floral organs. Genetic analysis indicates that CLV1, which encodes a receptor kinase, acts with CLV3 to control the balance between meristem cell proliferation and differentiation. CLV3 encodes a small, predicted extracellular protein. CLV3 acts nonautonomously in meristems and is expressed at the meristem surface overlying the CLV1 domain. These proteins may act as a ligand-receptor pair in a signal transduction pathway, coordinating growth between adjacent meristematic regions.  (+info)