BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. (17/5686)

New neurons are incorporated into the high vocal center (HVC), a nucleus of the adult canary (Serinus canaria) brain that plays a critical role in the acquisition and production of learned song. Recruitment of new neurons in the HVC is seasonally regulated and depends upon testosterone levels. We show here that brain-derived neurotrophic factor (BDNF) is present in the HVC of adult males but is not detectable in that of females, though the HVC of both sexes has BDNF receptors (TrkB). Testosterone treatment increases the levels of BDNF protein in the female HVC, and BDNF infused into the HVC of adult females triples the number of new neurons. Infusion of a neutralizing antibody to BDNF blocks the testosterone-induced increase in new neurons. Our results demonstrate that BDNF is involved in the regulation of neuronal replacement in the adult canary brain and suggest that the effects of testosterone are mediated through BDNF.  (+info)

Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. (18/5686)

Angiosarcomas apparently derive from blood vessel endothelial cells; however, occasionally their histological features suggest mixed origin from blood and lymphatic endothelia. In the absence of specific positive markers for lymphatic endothelia the precise distinction between these components has not been possible. Here we provide evidence by light and electron microscopic immunohistochemistry that podoplanin, a approximately 38-kd membrane glycoprotein of podocytes, is specifically expressed in the endothelium of lymphatic capillaries, but not in the blood vasculature. In normal skin and kidney, podoplanin colocalized with vascular endothelial growth factor receptor-3, the only other lymphatic marker presently available. Complementary immunostaining of blood vessels was obtained with established endothelial markers (CD31, CD34, factor VIII-related antigen, and Ulex europaeus I lectin) as well as podocalyxin, another podocytic protein that is also localized in endothelia of blood vessels. Podoplanin specifically immunolabeled endothelia of benign tumorous lesions of undisputed lymphatic origin (lymphangiomas, hygromas) and was detected there as a 38-kd protein by immunoblotting. As paradigms of malignant vascular tumors, poorly differentiated (G3) common angiosarcomas (n = 8), epitheloid angiosarcomas (n = 3), and intestinal Kaposi's sarcomas (n = 5) were examined for their podoplanin content in relation to conventional endothelial markers. The relative number of tumor cells expressing podoplanin was estimated and, although the number of cases in this preliminary study was limited to 16, an apparent spectrum of podoplanin expression emerged that can be divided into a low-expression group in which 0-10% of tumor cells contained podoplanin, a moderate-expression group with 30-60% and a high-expression group with 70-100%. Ten of eleven angiosarcomas and all Kaposi's sarcomas showed mixed expression of both lymphatic and blood vascular endothelial phenotypes. By double labeling, most podoplanin-positive tumor cells coexpressed endothelial markers of blood vessels, whereas few tumor cells were positive for individual markers only. From these results we conclude that (1) podoplanin is a selective marker of lymphatic endothelium; (2) G3 angiosarcomas display a quantitative spectrum of podoplanin-expressing tumor cells; (3) in most angiosarcomas, a varying subset of tumor cells coexpresses podoplanin and endothelial markers of blood vessels; and (4) all endothelial cells of Kaposi's sarcomas expressed the lymphatic marker podoplanin.  (+info)

Expression of neurotrophins and their receptors in human bone marrow. (19/5686)

The expression of neurotrophins and their receptors, the low-affinity nerve growth factor receptor (p75LNGFR) and the Trk receptors (TrkA, TrkB, and TrkC), was investigated in human bone marrow from 16 weeks fetal age to adulthood. Using reverse transcription-polymerase chain reaction, all transcripts encoding for catalytic and truncated human TrkB or TrkC receptors were detected together with trkAI transcripts, whereas trkAII transcripts were found only in control nerve tissues. Transcripts for the homologue of the rat truncated TrkC(ic113) receptor were identified for the first time in human tissue. Stromal adventitial reticular cells were found immunoreactive for all neutrophin receptors. In contrast, hematopoietic cell types were not immunoreactive for p75LNGFR but showed immunoreactivity for one or several Trk receptors. TrkA immunoreactivity was found in immature erythroblasts. Catalytic TrkB immunoreactivity was observed in eosinophilic metamyelocytes and polymorphonuclear cells. Truncated TrkB immunoreactivity was found in erythroblasts and megacaryocytes. Immunoreactivity for both catalytic and truncated TrkC receptor was observed in promyelocytes, myelocytes, some polymorphonuclear cells and megacaryocytes. Neutrophin transcript levels appeared higher at fetal than at adult stages, no variation in Trk family transcript levels was observed. The local expression of neurotrophin genes suggests a wide range of paracrine and/or autocrine mode of action through their corresponding receptors within the bone marrow.  (+info)

Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. (20/5686)

Angiogenesis is a prerequisite for solid tumor growth. Glioblastoma multiforme, the most common malignant brain tumor, is characterized by extensive vascular proliferation. We previously showed that transgenic mice expressing a GFAP-v-src fusion gene in astrocytes develop low-grade astrocytomas that progressively evolve into hypervascularized glioblastomas. Here, we examined whether tumor progression triggers angiogenetic signals. We found abundant transcription of vascular endothelial growth factor (VEGF) in neoplastic astrocytes at surprisingly early stages of tumorigenesis. VEGF and v-src expression patterns were not identical, suggesting that VEGF activation was not only dependent on v-src. Late-stage gliomas showed perinecrotic VEGF up-regulation similarly to human glioblastoma. Expression patterns of the endothelial angiogenic receptors flt-1, flk-1, tie-1, and tie-2 were similar to those described in human gliomas, but flt-1 was expressed also in neoplastic astrocytes, suggesting an autocrine role in tumor growth. In crossbreeding experiments, hemizygous ablation of the tumor suppressor genes Rb and p53 had no significant effect on the expression of VEGF, flt-1, flk-1, tie-1, and tie-2. Therefore, expression of angiogenic signals is an early event during progression of GFAP-v-src tumors and precedes hypervascularization. Given the close similarities in the progression pattern between GFAP-v-src and human gliomas, the present results suggest that these mice may provide a useful tool for antiangiogenic therapy research.  (+info)

In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region. (21/5686)

Recent studies have shown that long-term repopulating hematopoietic stem cells (HSCs) first appear in the aorta-gonad-mesonephros (AGM) region. Our immunohistochemistry study showed that TEK+ cells existed in the AGM region. Approximately 5% of AGM cells were TEK+, and most of these were CD34(+) and c-Kit+. We then established a coculture system of AGM cells using a stromal cell line, OP9, which is deficient in macrophage colony-stimulating factor (M-CSF). With this system, we showed that AGM cells at 10.5 days postcoitum (dpc) differentiated and proliferated into both hematopoietic and endothelial cells. Proliferating hematopoietic cells contained a significant number of colony-forming cells in culture (CFU-C) and in spleen (CFU-S). Among primary AGM cells at 10.5 dpc, sorted TEK+ AGM cells generated hematopoietic cells and platelet endothelial cell adhesion molecule (PECAM)-1(+) endothelial cells on the OP9 stromal layer, while TEK- cells did not. When a ligand for TEK, angiopoietin-1, was added to the single-cell culture of AGM, endothelial cell growth was detected in the wells where hematopoietic colonies grew. Although the incidence was still low (1/135), we showed that single TEK+ cells generated hematopoietic cells and endothelial cells simultaneously, using a single-cell deposition system. This in vitro coculture system shows that the TEK+ fraction of primary AGM cells is a candidate for hemangioblasts, which can differentiate into both hematopoietic cells and endothelial cells.  (+info)

Ryk is expressed in a differentiation-specific manner in epithelial tissues and is strongly induced in decidualizing uterine stroma. (22/5686)

Ryk is a ubiquitously expressed tyrosine kinase-like receptor of unknown activity and associations. We examined ryk expression in adult mouse epithelial tissues and during embryonic development at the histological level. Ryk RNA is present at greatly increased levels in cells at particular stages of epithelial differentiation: the basal layer of skin and tongue epithelia, the intervillous layer and some crypt bases of the intestine and the lower matrix region of the hair follicle. Although ryk RNA is expressed at similar levels in a variety of tissues from embryonic day 10.5 to 18.5, specific induction of ryk RNA can be seen by in situ hybridization in the basal layer of skin and hair follicle at day 15.5-16.5, and protein staining localizes to the hair follicle by immunohistochemistry. At day 4.5 and 6.5, little if any ryk is present in the blastocyst, but it is transiently induced at a high level in mature decidual cells of the uterine stroma. We review a number of independent isolations of ryk, including fruit fly and nematode members of the ryk family. Because ryk is induced in epithelial cells seeking a final place in a differentiated tissue, or during remodeling of the endometrium, and a homologous gene, derailed, is known to regulate muscle and nerve target seeking in Drosophila, ryk may also be involved in cellular recognition of appropriate context.  (+info)

Coexpression of transcripts encoding EPHB receptor protein tyrosine kinases and their ephrin-B ligands in human small cell lung carcinoma. (23/5686)

The EPH family is the largest subfamily of receptor protein tyrosine kinases, consisting of the EPHA and EPHB subgroups. Ephrin-B1, ephrin-B2, and ephrin-B3 are ligands of the EPHB subgroup and are encoded by the EFNB1, EFNB2, and EFNB3 genes, respectively. We have shown previously that EPHB2 transcripts are expressed in six small cell lung carcinoma (SCLC) cell lines. In this study, we examined the expression of EPHB1, EPHB2, EPHB3, EPHB4, and EPHB6 in 4 SCLC tumor specimens and 14 cell lines including 3 cell lines derived from these tumor specimens. To investigate whether potential autocrine loops of EPHB receptors and ephrin-B ligands exist in SCLC, the expression of EFNB1, EFNB2, and EFNB3 was also examined. Our data show that transcripts encoding multiple members of the EPHB subgroup and the ephrin-B subgroup are coexpressed in SCLC cell lines and tumors. These results suggest that the EPHB subgroup receptor kinases may modulate the biological behavior of SCLC through autocrine and/or juxtacrine activation by ephrin-B ligands that are expressed in the same or neighboring cells.  (+info)

Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues. (24/5686)

Vascular endothelial growth factor is an important physiological regulator of angiogenesis. The function of this endothelial cell selective growth factor is mediated by two homologous tyrosine kinase receptors, fms-like tyrosine kinase 1 (Flt-1) and kinase domain receptor (KDR). Although the functional consequence of vascular endothelial growth factor binding to the Flt-1 receptor is not fully understood, it is well established that mitogenic signaling is mediated by KDR. Upon sequencing several independent cDNA clones spanning the cytoplasmic region of human KDR, we identified and confirmed the identity of a functionally required valine at position 848 in the ATP binding site, rather than the previously reported glutamic acid residue, which corresponds to an inactive tyrosine kinase. The cytoplasmic domain of recombinant native KDR, expressed as a glutathione S-transferase fusion protein, can undergo autophosphorylation in the presence of ATP. In addition, the kinase activity can be substantially increased by autophosphorylation at physiologic ATP concentrations. Mutation analysis indicates that both tyrosine residues 1054 and 1059 are required for activation, which is a consequence of an increased affinity for both ATP and the peptide substrate and has no effect on kcat, the intrinsic catalytic activity of the enzyme. KDR kinase catalyzes phosphotransfer by formation of a ternary complex with ATP and the peptide substrate. We demonstrate that tyrosine kinase antagonists can preferentially inhibit either the unactivated or activated form of the enzyme.  (+info)