Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. (73/568)

Nerve growth factor (NGF) is a polypeptide which, in addition to its effect on nerve cells, is believed to play a role in inflammatory responses and in tissue repair. Because fibroblasts represent the main target and effector cells in these processes, to investigate whether NGF is involved in lung and skin tissue repair, we studied the effect of NGF on fibroblast migration, proliferation, collagen metabolism, modulation into myofibroblasts, and contraction of collagen gel. Both skin and lung fibroblasts were found to produce NGF and to express tyrosine kinase receptor (trkA) under basal conditions, whereas the low-affinity p75 receptor was expressed only after prolonged NGF exposure. NGF significantly induced skin and lung fibroblast migration in an in vitro model of wounded fibroblast and skin migration in Boyden chambers. Nevertheless NGF did not influence either skin or lung fibroblast proliferation, collagen production, or metalloproteinase production or activation. In contrast, culture of both lung and skin fibroblasts with NGF modulated their phenotype into myofibroblasts. Moreover, addition of NGF to both fibroblast types embedded in collagen gel increased their contraction. Fibrotic human lung or skin tissues displayed immunoreactivity for NGF, trkA, and p75. These data show a direct pro-fibrogenic effect of NGF on skin and lung fibroblasts and therefore indicate a role for NGF in tissue repair and fibrosis.  (+info)

Spatial and temporal distribution of nerves, ganglia, and smooth muscle during the early pseudoglandular stage of fetal mouse lung development. (74/568)

Neural tissue and smooth muscle appear early in the developing fetal lung, but little is known of their origin and subsequent distribution. To investigate the spatial and temporal distribution of nerves, ganglia, and airway smooth muscle during the early pseudoglandular stage, fetal mouse lungs at embryonic days (E) 11 to 14 were immunostained as whole-mounts and imaged by confocal microscopy. At E11, the primordial lung consisted of the future trachea and two budding epithelial tubules that were covered in smooth muscle to the base of the growing buds. The vagus and processes entering the lung were positive for the neural markers PGP 9.5 (protein gene product 9.5) and synapsin but no neurons were stained at this stage. An antibody to p75NTR revealed neural crest cells on the future trachea as well as in the vagus and in processes extending from the vagus to the lung. This finding indicates that even though neuronal precursors are already present at this stage, they are still migrating into the lung. By E12, neural tissue was abundant in the proximal part of the lung and nerves followed the smooth muscle-covered tubules to the base of the growing buds. At E13 and E14, a neural network of interconnected ganglia, innervated by the vagus, covered the trachea. The postganglionic nerves mainly followed the smooth muscle-covered tubules, but some extended out into the mesenchyme beyond the epithelial buds. Furthermore, we show in a model of cultured lung explants that neural tissue and smooth muscle persist and continue to grow and differentiate in vitro. By using fluorescent markers and confocal microscopy, we present the developing lung as a dynamic structure with smooth muscle and neural tissue in a prime position to influence growth and development.  (+info)

Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. (75/568)

We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140(trkA) and p75(NTR). The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140(trkA) as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75(NTR). In contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75(NTR) as well as the activation of the transcription factor NF-kB, but neither p140(trkA) nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75(NTR) in NGF-mediated survival. Both the pharmacological NF-kappaB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75(NTR) and NF-kappaB in the activation of the survival pathway in breast cancer cells.  (+info)

Expression of nerve growth factor receptors and their prognostic value in human breast cancer. (76/568)

Nerve growth factor (NGF) has been shown recently to be mitogenic for human breast cancer cells. In the present study, we have assayed the expression of NGF receptors (NGFRs: TrkA and p75) mRNAs in 363 human primary breast cancers, using real-time quantitative reverse transcription-PCR. NGFRs were found in all of the tumor biopsies. TrkA and p75 were positively correlated and were respectively associated with the histoprognostic grading and the tumor type. NGFRs were both related to progesterone receptors. In univariate analyses, TrkA (>upper quartile) was associated with longer overall survival. Histoprognostic grading, tumor size, node involvement, and steroid receptors were also prognostic factors. In Cox multivariate analyses, TrkA was not a prognostic parameter. This study demonstrates the expression of NGFRs in breast cancer and points out that patients with high levels of TrkA have a more favorable overall survival prognosis.  (+info)

Nerve growth factor regulates TNF-alpha production in mouse macrophages via MAP kinase activation. (77/568)

In this study, we examined the expression of nerve growth factor (NGF) and its receptors in mouse macrophages and the mechanisms involved in the effect of NGF on tumor necrosis factor (TNF)-alpha production. Macrophages expressed NGF and the NGF receptors TrkA and p75. Treatment of J744 cells or peritoneal macrophages with NGF induced a large increase in the production of TNF-alpha. In addition, NGF induced the secretion of nitric oxide in interferon-gamma-treated J774 cells or lipopolysaccharide-treated peritoneal macrophages. The induction of TNF-alpha production by NGF was blocked by K252a, an inhibitor of the TrkA receptor. NGF induced phosphorylation and activation of extracellular signal-regulated kinase, Erk1/Erk2 and c-Jun amino-terminal kinase, whereas it did not induce phosphorylation of p38 mitogen-activated protein kinase. Inhibition of the MAP kinase-Erk kinase pathway with PD 098059 decreased the secretion of TNF-alpha by NGF. Our results suggest that NGF has an important role in the activation of macrophages during inflammatory responses via activation of mitogen-activated protein kinases.  (+info)

Zinc inhibits p75NTR-mediated apoptosis in chick neural retina. (78/568)

It has previously been documented that Zn2+ inhibits TrkA-mediated effects of NGF. To evaluate the ability of Zn2+ to attenuate the biological activities of NGF mediated by p75NTR, we characterized the effects of this transition metal cation on both binding and the pro-apoptotic properties of the NGF-p75NTR interaction. Binding of NGF to p75NTR displayed higher affinity in embryonic chick retinal cells than in PC12 cells. NGF induced apoptosis in dissociated cultures of chick neural retina. The addition of 100 microM Zn2+ inhibited binding and chemical cross-linking of 125I-NGF to p75NTR, and also attenuated apoptosis mediated by this ligand-receptor interaction. These studies lead to the conclusion that Zn2+ antagonizes NGF/p75NTR-mediated signaling, suggesting that the effect of this transition metal cation can be either pro- or anti-apoptotic depending on the cellular context.  (+info)

p75 Co-receptors regulate ligand-dependent and ligand-independent Trk receptor activation, in part by altering Trk docking subdomains. (79/568)

Neurotrophins signal via Trk tyrosine kinase receptors and a common receptor called p75. Nerve growth factor is the cognate ligand for TrkA, brain-derived neurotrophic factor for TrkB, and neurotrophin-3 (NT-3) for TrkC. NT-3 also binds TrkA and TrkB as a heterologous ligand. All neurotrophins bind p75, which regulates ligand affinity and Trk signals. Trk extracellular domain has five subdomains: a leucine-rich motif, two cysteine-rich clusters, and immunoglobulin-like subdomains IgG-C1 and IgG-C2. The IgG-C1 subdomain is surface exposed in the tertiary structure and regulates ligand-independent activation. The IgG-C2 subdomain is less exposed but regulates cognate ligand binding and Trk activation. NT-3 as a heterologous ligand of TrkA and TrkB optimally requires the IgG-C2 but also binds other subdomains of these receptors. When p75 is co-expressed, major changes are observed; NGF-TrkA activation can occur also via the cysteine 1 subdomain, and brain-derived neurotrophic factor-TrkB activation requires the TrkB leucine-rich motif and cysteine 2 subdomains. We propose a two-site model of Trk binding and activation, regulated conformationally by the IgG-C1 subdomain. Moreover, p75 affects Trk subdomain utilization in ligand-dependent activation, possibly by conformational or allosteric control.  (+info)

The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. (80/568)

Ligand-induced receptor oligomerization is an established mechanism for receptor-tyrosine kinase activation. However, numerous receptor-tyrosine kinases are expressed in multicomponent complexes with other receptors that may signal independently or alter the binding characteristics of the receptor-tyrosine kinase. Nerve growth factor (NGF) interacts with two structurally unrelated receptors, the Trk A receptor-tyrosine kinase and p75, a tumor necrosis factor receptor family member. Each receptor binds independently to NGF with predominantly low affinity (K(d) = 10(-9) m), but they produce high affinity binding sites (K(d) = 10(-11) m) upon receptor co-expression. Here we provide evidence that the number of high affinity sites is regulated by the ratio of the two receptors and by specific domains of Trk A and p75. Co-expression of Trk A containing mutant transmembrane or cytoplasmic domains with p75 yielded reduced numbers of high affinity binding sites. Similarly, co-expression of mutant p75 containing altered transmembrane and cytoplasmic domains with Trk A also resulted in predominantly low affinity binding sites. Surprisingly, extracellular domain mutations of p75 that abolished NGF binding still generated high affinity binding with Trk A. These results indicate that the transmembrane and cytoplasmic domains of Trk A and p75 are responsible for high affinity site formation and suggest that p75 alters the conformation of Trk A to generate high affinity NGF binding.  (+info)