Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. (65/11134)

ErbB2 (HER2, Neu), a member of the epidermal growth factor (EGF) receptor tyrosine kinase family, is often overexpressed in breast cancer and other malignancies. ErbB2 homodimerizes but also presents as a common auxiliary subunit of the EGF and heregulin receptors (erbB1 or EGFR; and erbB3-4, respectively), with which it heteroassociates. ErbB2 is generally regarded as an orphan (ligand-less) receptor with a very potent kinase domain activated either via its associated partners or constitutively as a consequence of discrete mutations. It follows that the extent and regulation of its cell surface interactions are of central importance. We have studied the large-scale association pattern of erbB2 in quiescent and activated cells labeled with fluorescent anti-erbB2 monoclonal antibodies using scanning near-field optical microscopy (SNOM). ErbB2 was found to be concentrated in irregular membrane patches with a mean diameter of approx. 0.5 microm in nonactivated SKBR3 and MDA453 human breast tumor cells. The average number of erbB2 proteins in a single cluster on nonactivated SKBR3 cells was about 10(3). Activation of SKBR3 cells with EGF, heregulin as well as a partially agonistic anti-erbB2 monoclonal antibody led to an increase in the mean cluster diameter to 0.6-0.9 microm, irrespective of the ligand. The EGF-induced increase in the erbB2 cluster size was inhibited by the EGFR-specific tyrosine kinase inhibitor PD153035. The average size of erbB2 clusters on the erbB2-transfected line of CHO cells (CB2) was similar to that of activated SKBR3 cells, a finding correlated with the increased base-line tyrosine phosphorylation of erbB2 in cells expressing only erbB2. We conclude that an increase in cluster size may constitute a general phenomenon in the activation of erbB2.  (+info)

Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. (66/11134)

G protein-coupled receptors (GPCRs) initiate Ras-dependent activation of the Erk 1/2 mitogen-activated protein kinase cascade by stimulating recruitment of Ras guanine nucleotide exchange factors to the plasma membrane. Both integrin-based focal adhesion complexes and receptor tyrosine kinases have been proposed as scaffolds upon which the GPCR-induced Ras activation complex may assemble. Using specific inhibitors of focal adhesion complex assembly and receptor tyrosine kinase activation, we have determined the relative contribution of each to activation of the Erk 1/2 cascade following stimulation of endogenous GPCRs in three different cell types. The tetrapeptide RGDS, which inhibits integrin dimerization, and cytochalasin D, which depolymerizes the actin cytoskeleton, disrupt the assembly of focal adhesions. In PC12 rat pheochromocytoma cells, both agents block lysophosphatidic acid (LPA)- and bradykinin-stimulated Erk 1/2 phosphorylation, suggesting that intact focal adhesion complexes are required for GPCR-induced mitogen-activated protein kinase activation in these cells. In Rat 1 fibroblasts, Erk 1/2 activation via LPA and thrombin receptors is completely insensitive to both agents. Conversely, the epidermal growth factor receptor-specific tyrphostin AG1478 inhibits GPCR-mediated Erk 1/2 activation in Rat 1 cells but has no effect in PC12 cells. In HEK-293 human embryonic kidney cells, LPA and thrombin receptor-mediated Erk 1/2 activation is partially sensitive to both the RGDS peptide and tyrphostin AG1478, suggesting that both focal adhesion and receptor tyrosine kinase scaffolds are employed in these cells. The dependence of GPCR-mediated Erk 1/2 activation on intact focal adhesions correlates with expression of the calcium-regulated focal adhesion kinase, Pyk2. In all three cell types, GPCR-stimulated Erk 1/2 activation is significantly inhibited by the Src kinase inhibitors, herbimycin A and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-D-3,4-pyrimidine (PP1), suggesting that Src family nonreceptor tyrosine kinases represent a point of convergence for signals originating from either scaffold.  (+info)

Transmodulation of epidermal growth factor receptor function by cyclic AMP-dependent protein kinase. (67/11134)

Binding of epidermal growth factor (EGF) to its receptor (EGFR) augments the tyrosine kinase activity of the receptor and autophosphorylation. Exposure of some tissues and cells to EGF also stimulates adenylyl cyclase activity and results in an increase in cyclic AMP (cAMP) levels. Because cAMP activates the cAMP-dependent protein kinase A (PKA), we investigated the effect of PKA on the EGFR. The purified catalytic subunit of PKA (PKAc) stoichiometrically phosphorylated the purified full-length wild type (WT) and kinase negative (K721M) forms of the EGFR. PKAc phosphorylated both WT-EGFR as well as a mutant truncated form of EGFR (Delta1022-1186) exclusively on serine residues. Moreover, PKAc also phosphorylated the cytosolic domain of the EGFR (EGFRKD). Phosphorylation of the purified WT as well as EGFRDelta1022-1186 and EGFRKD was accompanied by decreased autophosphorylation and diminished tyrosine kinase activity. Pretreatment of REF-52 cells with the nonhydrolyzable cAMP analog, 8-(4-chlorophenylthio)-cAMP, decreased EGF-induced tyrosine phosphorylation of cellular proteins as well as activation of the WT-EGFR. Similar effects were also observed in B82L cells transfected to express the Delta1022-1186 form of EGFR. Furthermore, activation of PKAc in intact cells resulted in serine phosphorylation of the EGFR. The decreased phosphorylation of cellular proteins and diminished activation of the EGFR in cells treated with the cAMP analog was not the result of altered binding of EGF to its receptors or changes in receptor internalization. Therefore, we conclude that PKA phosphorylates the EGFR on Ser residues and decreases its tyrosine kinase activity and signal transduction both in vitro and in vivo.  (+info)

99mTc-labeled antihuman epidermal growth factor receptor antibody in patients with tumors of epithelial origin: Part III. Clinical trials safety and diagnostic efficacy. (68/11134)

Monoclonal antibody (moAb) ior egf/r3 is an IgG2a that recognizes the epidermal growth factor receptor (EGF-R). The aim of this study was to evaluate the diagnostic efficacy of the 99mTc-labeled moAb ior egf/r3 for the detection of epithelial-derived tumors, their metastases and recurrences. METHODS: One hundred forty-eight adult patients (51 women, 97 men; mean age 53 +/- 13 y) who were suspected of having cancer of epithelial origin were administered 3 mg/50 mCi (1.85 GBq) 99mTc-labeled moAb ior egf/r3 by intravenous bolus injection. Planar anterior and posterior images of the lesion sites and suspected metastases were acquired at 2, 4, 6 and 24 h after injection, and SPECT images were scanned at 5 h postinjection, using a 360 degrees circular orbit with 64 images. The backprojection method was used for image reconstruction with a Hamming-Hann filter. RESULTS: Labeling efficiency was always greater than 98.5% +/- 2.1 %. No adverse reactions or side effects were observed. Results of the biopsy specimens showed that 85.1% (126/148) of the patients had tumors of epithelial origin, 14.2% (21/148) were negative and 0.7% (1/148) had non-Hodgkin's lymphoma. The sensitivity rate by organ was as follows: brain (8/8, 100%), digestive tract (10/11, 90.9%), head and neck (17/23, 73.9%), lung (52/62, 83.9%) and breast (16/18, 88.9%). Overall sensitivity, specificity, accuracy, and positive and negative predictive values of the immunoscintigraphic imaging were 84.2% (106/126), 100.0% (22/22), 86.5% (128/148), 100% (106/106) and 52.4% (22/42), respectively. New metastases not identified previously by other diagnostic methods were detected in the 50% of the patients. CONCLUSION: Immunoscintigraphy with 99mTc-labeled moAb ior egf/r3 could be a useful procedure for the diagnosis and follow-up of the patients with tumors of epithelial origin.  (+info)

Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. (69/11134)

Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.  (+info)

Growth induction of hepatic stimulator substance in hepatocytes through its regulation on EGF receptors. (70/11134)

The cytosolic liver-specific growth factor-hepatic stimulator substance (HSS) has been shown to be able to amplify the rat hepatocyte proliferation responded to EGF. In order to get more insight into the mechanism, the regulatory effect of HSS on EGF-receptor (EGF-R) and the receptor phosphorylation at molecular level was studied. HSS partially purified from weanling rat liver was given to cultured hepatocytes and its influence on EGF-R specific binding and internalization as well as mRNA expression were investigated. The results showed that preincubation of hepatocytes with HSS could lead to an increase in [125I]-EGF binding to its receptors and inhibit EGF-induced receptor down-regulation. Furthermore, the over-expression of EGF-R mRNA stimulated by HSS was seen during 2-12 h after the incubation. Additionally, it was demonstrated with human hepatoma SMMC-7721 cells in Western blot that the EGF-R expression and the receptor autophosphorylation were increased with dose/time-dependency after HSS treatment. These results strongly suggest that the mechanism of HSS action on hepatocyte growth might be related to its modulation on EGF-R and receptor-mediated signaling transduction.  (+info)

Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-beta synthesis via transcriptional and posttranscriptional mechanisms. (71/11134)

The signaling cascade elicited by angiotensin II (Ang II) resembles that characteristic of a growth factor, and recent evidence indicates transactivation of epidermal growth factor receptor (EGF-R) by G protein-coupled receptors. Here, we report the involvement of EGF-R in Ang II-induced synthesis of fibronectin and transforming growth factor-beta (TGF-beta) in cardiac fibroblasts. Ang II stimulated fibronectin mRNA levels dose dependently, with a maximal increase (approximately 5-fold) observed after 12 hours of incubation. Fibronectin synthesis induced by Ang II or calcium ionophore was completely abolished by tyrosine kinase inhibitors and intracellular Ca2+ chelating agents. Ang II-induced fibronectin mRNA was not affected by protein kinase C inhibitors or protein kinase C depletion, whereas specific inhibition of EGF-R function by a dominant negative EGF-R mutant and tyrphostin AG1478 abolished induction of fibronectin mRNA. We isolated the rat fibronectin gene, including the 5'-flanking region, and found that the activator protein-1 (AP-1) binding site present in the promoter region was responsible for the Ang II responsiveness of this gene. A gel retardation assay revealed the binding of nuclear protein to the AP-1 site, which was supershifted with anti-c-fos and anti-c-jun but not anti-activating transcription factor (ATF)-2 antibodies. Conditioned medium from Ang II-treated cells contained TGF-beta bioactivity, and addition of neutralizing TGF-beta antibody modestly (46%) inhibited induction of fibronectin. Ang II-induced synthesis of TGF-beta was also abolished by inhibition of EGF-R function. The effect of TGF-beta was exerted by stabilizing fibronectin mRNA without affecting the promoter activity and required de novo protein synthesis. We concluded that Ang II-induced expression of fibronectin and TGF-beta is mediated by downstream signaling of EGF-R transactivated by Ca2+-dependent tyrosine kinase and that Ang II-induced fibronectin mRNA expression is regulated by 2 different mechanisms, which are transcriptional control by binding of the c-fos/c-jun complex to the AP-1 site and posttranscriptional control by mRNA stabilization due to autocrine or paracrine effects of TGF-beta. Thus, this study suggests that the action of Ang II on extracellular matrix formation should be interpreted in association with the EGF-R signaling cascade.  (+info)

Medullary thyroid carcinomas in transgenic mice expressing a Polyoma carboxyl-terminal truncated middle-T and wild type small-T antigens. (72/11134)

Medullary thyroid carcinoma (MTC) is a rare human tumor affecting the calcitonin-secreting c-cells of the thyroid. Here we report that two independent strains of transgenic mice expressing a Polyomavirus (Py) truncated middle-T antigen (deltaMT), consisting of the amino-terminal 304 amino acids, and the full length Py small-T antigen, developed multifocal bilateral MTCs with 100% penetrance. Occasionally one strain also developed mammary and bone tumors. Furthermore, offspring from both transgenic lines displayed pronounced waviness of the whiskers and fur, previously associated with defective epidermal growth factor receptor signaling. Transgene transcription, driven by the homologous early promoter/enhancer, and the corresponding translation products were detected in tumors and in many other organs which did not develop pathologies. The subcellular distribution of deltaMT and its interactions with the adapter proteins of the SHC family have also been analysed. Our study describes a novel murine model of MTC and provides evidence that the N-terminal 304 amino acid fragment of Py middle-T antigen, possibly in co-operation with small-T antigen, acts as a potent oncogene in c-cells of the thyroid.  (+info)