Cloning and characterization of EphA3 (Hek) gene promoter: DNA methylation regulates expression in hematopoietic tumor cells. (1/42)

The Eph family of receptor tyrosine kinases (RTK) has restricted temporal and spatial expression patterns during development, and several members are also found to be upregulated in tumors. Very little is known of the promoter elements or regulatory factors required for expression of Eph RTK genes. In this report we describe the identification and characterization of the EphA3 gene promoter region. A region of 86 bp located at -348 bp to -262 bp upstream from the transcription start site was identified as the basal promoter. This region was shown to be active in both EphA3-expressing and -nonexpressing cell lines, contrasting with the widely different levels of EphA3 expression. We noted a region rich in CpG dinucleotides downstream of the basal promoter. Using Southern blot analyses with methylation-sensitive restriction enzymes and bisulfite sequencing of genomic DNA, sites of DNA methylation were identified in hematopoietic cell lines which correlated with their levels of EphA3 gene expression. We showed that EphA3 was not methylated in normal tissues but that a subset of clinical samples from leukemia patients showed extensive methylation, similar to that observed in cell lines. These results suggest that DNA methylation may be an important mechanism regulating EphA3 transcription in hematopoietic tumors.  (+info)

Selective inhibition of spinal cord neurite outgrowth and cell survival by the Eph family ligand ephrin-A5. (2/42)

The Eph family tyrosine kinase receptors and their ligands, the ephrins, have been shown to play critical roles in cell migration, tissue morphogenesis, and axonal guidance in many different systems. However, their function in the spinal cord has not been examined carefully. We showed in this study that several Eph receptors, including EphA3, Eph A4, and Eph A5, are expressed in the ventral spinal cord in partially overlapping patterns, with EphA5 exhibiting the most widespread transcription in the entire ventral spinal cord during early development. Complementary to the receptor expression, a ligand of these receptors, ephrin-A5, is transcribed in the dorsal half of the spinal cord. Consistent with the spatial location of receptor expression, the ligand selectively inhibits neurite outgrowth and induces cell death of the ventral, but not the dorsal, spinal cord neurons. These observations suggest that interactions between the Eph family receptors and ligands exerts negative influences on ventral spinal cord neurons and thus may play important roles in regulating morphogenesis and axon guidance in the spinal cord.  (+info)

Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. (3/42)

Topographic maps are a fundamental feature of sensory representations in nervous systems. The formation of one such map, defined by the connection of ganglion cells in the retina to their targets in the superior colliculus of the midbrain, is thought to depend upon an interaction between complementary gradients of retinal EphA receptors and collicular ephrin-A ligands. We have tested this hypothesis by using gene targeting to elevate EphA receptor expression in a subset of mouse ganglion cells, thereby producing two intermingled ganglion cell populations that express distinct EphA receptor gradients. We find that these two populations form separate maps in the colliculus, which can be predicted as a function of the net EphA receptor level that a given ganglion cell expresses relative to its neighbors.  (+info)

Regulated cleavage of a contact-mediated axon repellent. (4/42)

Contact-mediated axon repulsion by ephrins raises an unresolved question: these cell surface ligands form a high-affinity multivalent complex with their receptors present on axons, yet rather than being bound, axons can be rapidly repelled. We show here that ephrin-A2 forms a stable complex with the metalloprotease Kuzbanian, involving interactions outside the cleavage region and the protease domain. Eph receptor binding triggered ephrin-A2 cleavage in a localized reaction specific to the cognate ligand. A cleavage-inhibiting mutation in ephrin-A2 delayed axon withdrawal. These studies reveal mechanisms for protease recognition and control of cell surface proteins, and, for ephrin-A2, they may provide a means for efficient axon detachment and termination of signaling.  (+info)

Differential splicing generates Tvl-1/RFXANK isoforms with different functions. (5/42)

Earlier studies have shown that Tvl-1 gives rise to at least two differentially spliced mRNAs, one of which (Tvl-S) encodes a protein that lacks amino acids 91-112. DNA binding of RFX complexes assembled in the presence of Tvl-S is impaired. As a result, Tvl-S does not support the expression of Class II major histocompatibility complex (MHC) genes. Here, we show that the reason Tvl-S is inactive as a transcriptional regulator of Class II MHC genes is that the RFX complexes assembled in the presence of Tvl-S are unstable. Additionally, we show that interferon-gamma, which induces Class II MHC gene expression in 293 cells, promotes a shift in the splicing pattern of RFXANK/Tvl-1 toward the transcriptionally active Tvl-L isoform, suggesting that differential splicing of Tvl-1 is a signal-regulated process. Finally, we show that Tvl-1 regulates the expression of non-MHC genes. One such gene encodes the ephrin receptor EphA3. Since both Tvl-L and Tvl-S are identical in their ability to induce the expression of EphA3, we conclude that Tvl-1 regulates the expression of non-MHC genes by RFX-independent mechanisms.  (+info)

Domain-specific olivocerebellar projection regulated by the EphA-ephrin-A interaction. (6/42)

Neural maps in the vertebrate central nervous system often show discontinuously segregated, domain-to-domain patterns. However, the molecular mechanism that establishes such maps is not well understood. Here we show that in the chicken olivocerebellar system, EphA receptors and ephrin-As are expressed with distinct levels and combinations in mapping domains. When ephrin-A2 is retrovirally overexpressed in the cerebellum, the olivocerebellar map is disrupted, excluding axons with high receptor activity from ectopic expression domains. Conversely, overexpression of a truncated EphA3 receptor in the cerebellum reduces endogenous ligand activity to undetectable levels and causes aberrant mapping, with high receptor axons invading high ligand domains. In vitro, ephrin-A2 inhibits outgrowth of inferior olive axons in a region-specific manner. These results suggest that Eph receptors and ephrins constitute domain-specific positional information, and the spatially accurate receptor-ligand interaction is essential to guide inferior olive axons to their correct target domains.  (+info)

Tyrosine-kinase expression profiles in human gastric cancer cell lines and their modulations with retinoic acids. (7/42)

Many protein tyrosine kinases are key regulators involved in cellular growth, differentiation, development, apoptosis and signal transduction pathways. Obtaining a comprehensive tyrosine-kinase expression profile in tumour cells is essential to learning more about their oncogenic potentials and responses to various chemotherapeutic reagents - such as retinoic acid, which has been shown to suppress the growth of gastric cancer cells and modulate gene expression. Expression of tyrosine kinases in retionic acid-treated cancer cells was investigated by reverse trancriptase-polymerase chain reaction (RT-PCR) and a novel restriction analysis of gene expression (RAGE) display technique. We first established comprehensive tyrosine-kinase profiles in different human gastric cancer cell lines. In cells treated with 9-cis-retinoic acid or all-trans-retinoic acid, we found that two PTKs (Eph and Hek5) appeared to be upregulated. In the present study, we demonstrate an efficient and simple RAGE approach for examining tyrosine kinases' expression in tumour cells and their alterations following drug treatments.  (+info)

Ephrin-A1 induces c-Cbl phosphorylation and EphA receptor down-regulation in T cells. (8/42)

Eph receptor tyrosine kinases are expressed by T lineage cells, and stimulation with their ligands, the ephrins, has recently been shown to modulate T cell behavior. We show that ephrin-A1 stimulation of Jurkat T cells induces tyrosine phosphorylation of EphA3 receptors and cytoplasmic proteins, including the c-cbl proto-oncogene. Cbl phosphorylation was also observed in peripheral blood T cells. In contrast, stimulation of Jurkat cells with the EphB receptor ligand ephrin-B1 does not cause Cbl phosphorylation. EphA activation also induced Cbl association with Crk-L and Crk-II adapters, but not the related Grb2 protein. Induction of Cbl phosphorylation upon EphA activation appeared to be dependent upon Src family kinase activity, as Cbl phosphorylation was selectively abrogated by the Src family inhibitor 4-amino-5(4-chlorophenyl-7-(tert-butyl)pyrazolo[3,4-d]pyrimidine, while EphA phosphorylation was unimpaired. Ephrin-A1 stimulation of Jurkat cells was also found to cause down-regulation of endogenous EphA3 receptors from the cell surface and their degradation. In accordance with the role of Cbl as a negative regulator of receptor tyrosine kinases, overexpression of wild-type Cbl, but not its 70-Z mutant, was found to down-regulate EphA receptor expression. Receptor down-regulation could also be inhibited by blockage of Src family kinase activity. Our findings show that EphA receptors can actively signal in T cells, and that Cbl performs multiple roles in this signaling pathway, functioning to transduce signals from the receptors as well as regulating activated EphA receptor expression.  (+info)