(1/1474) A critical role for the cannabinoid CB1 receptors in alcohol dependence and stress-stimulated ethanol drinking.

Although many people drink alcohol regularly, only some become addicted. Several studies have shown that genetic and environmental factors contribute to individual differences in the vulnerability to the effects of alcohol (Nestler, 2000; Kreek, 2001; Crabbe, 2002). Among the environmental factors, stress is perhaps the most important trigger for relapse after a period of abstinence (Koob and Nestler, 1997; Piazza and Le Moal, 1998; Koob and Le Moal, 2001; Weiss et al., 2001). Here we show that ethanol withdrawal symptoms were completely absent in cannabinoid CB1 receptor-deficient mice, although acute effects of ethanol and ethanol tolerance and preference were basically normal. Furthermore, foot-shock stress had no affect on alcohol preference in Cnr1-/- mice, although it induced a dramatic increase in Cnr1+/+ animals. These results reveal a critical role for the CB1 receptor in clinically important aspects of alcohol dependence and provide a rationale for the use of CB1 receptor antagonists in the treatment of alcohol addiction.  (+info)

(2/1474) Cannabinoid CB(1) receptor-mediated inhibition of hippocampal acetylcholine release is preserved in aged mice.

1. The cannabinoid CB(1) receptor inverse agonist/antagonist SR 141716 increases acetylcholine release in rodent hippocampus and improves memory in some experimental paradigms. Since drugs like SR 141716 may represent a novel class of cognition-enhancing drugs, we wanted to check whether the function of the CB(1) receptor is preserved during ageing. 2. Hippocampal and striatal slices from 2- to 3- and 24- to 28-month-old C57BL/6J mice were preincubated with [(3)H]-choline or [(3)H]-noradrenaline ([(3)H]-NA) and superfused. 3. The cannabinoid receptor agonist WIN 55212-2 inhibited, and SR 141716 facilitated, the electrically (3 Hz) evoked tritium overflow in hippocampal slices (preincubated with [(3)H]-choline) from young and aged mice to the same extent. The evoked overflow per se was less by 33% in slices from aged animals. 4. WIN 55212-2 and SR 141716 did not affect, but the muscarinic receptor agonist oxotremorine inhibited, the evoked (3 Hz) overflow in striatal slices (preincubated with [(3)H]-choline) from young and aged mice to the same extent. The evoked overflow per se tended to be less in slices from aged animals. 5. The evoked (0.3 Hz) overflow in hippocampal slices (preincubated with [(3)H]-NA) was not affected by WIN 55212-2 and SR 141716, but was inhibited by histamine (via H(3) receptors) in slices from young mice and, to a somewhat less extent, in slices from aged mice. The evoked overflow per se did not differ between age groups. 6. In conclusion, the function of the CB(1) receptor involved in the tonic inhibition of hippocampal acetylcholine release is preserved in aged mice.  (+info)

(3/1474) A3 adenosine and CB1 receptors activate a PKC-sensitive Cl- current in human nonpigmented ciliary epithelial cells via a G beta gamma-coupled MAPK signaling pathway.

(1) We examined A3 adenosine and CB1 cannabinoid receptor-coupled signaling pathways regulating Cl(-) current in a human nonpigmented ciliary epithelial (NPCE) cell line. (2) Whole-cell patch-clamp recordings demonstrated that the A3 receptor agonist, IB-MECA, activates an outwardly rectifying Cl(-)current (I(Cl,Aden)) in NPCE cells, which was inhibited by the adenosine receptor antagonist, CGS-15943 or by the protein kinase C (PKC) activator, phorbol 12,13 dibutyrate (PDBu). (3) Treatment of NPCE cells with pertussis-toxin (PTX), or transfection with the COOH-terminus of beta-adrenergic receptor kinase (ct-betaARK), inhibited I(Cl,Aden). The phosphatidyl inositol 3-kinase (PI3K) inhibitor, wortmannin, had no effect on I(Cl,Aden); however, the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, inhibited I(Cl,Aden). (4) Reverse transcription-polymerase chain reaction experiments and immunocytochemistry confirmed mRNA and protein expression for the CB1 receptor in NPCE cells, and the CB1 receptor agonist, Win 55,212-2, activated a PDBu-sensitive Cl(-) current (I(Cl,Win)). (5) Transfection of NPCE cells with the human CB1 (hCB1) receptor, increased I(Cl,Win), consistent with increased receptor expression, and I(Cl,Win) in hCB1 receptor-transfected cells was decreased after application of a CB1 receptor inverse agonist, SR 141716. (6) Constitutive activity for CB1 receptors was not significant in NPCE cells as transfection with hCB1 receptors did not increase basal Cl(-) current, nor was basal current inhibited by SR 141716. (7) I(Cl,Win) was inhibited by PTX preincubation, by transfection with ct-betaARK and by the MEK inhibitor, PD98059, but unaffected by the PI3K inhibitor, wortmannin. (8) We conclude that both A3 and CB1 receptors activate a PKC-sensitive Cl(-) current in human NPCE cells via a G(i/o)/Gbetagamma signaling pathway, in a manner independent of PI3K but involving MAPK.  (+info)

(4/1474) Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor.

1 Two cannabinoid receptors, CB1 and CB2, have been identified. The CB1 receptor is preferentially expressed in brain, and the CB2 receptor in cells of leukocyte lineage. We identified the mRNA for the CB1 receptor in human neuroblastoma SH-SY5Y cells, and the mRNA and protein for the CB2 receptor in human microglia and THP-1 cells. 2 Delta(9)-and Delta(8)-tetrahydrocannabinol (THC) were toxic when added directly to SH-SY5Y neuroblastoma cells. The toxicity of Delta(9)- THC was inhibited by the CB1 receptor antagonist SR141716A but not by the CB2 receptor antagonist SR144528. The endogenous ligand anandamide was also toxic, and this toxicity was enhanced by inhibitors of its enzymatic hydrolysis. 3 The selective CB2 receptor ligands JWH-015 and indomethacin morpholinylamide (BML-190), when added to THP-1 cells before stimulation with lipopolysaccharide (LPS) and IFN-gamma, reduced the toxicity of their culture supernatants to SH-SY5Y cells. JWH-015 was more effective against neurotoxicity of human microglia than THP-1 cells. The antineurotoxic activity of JWH-015 was blocked by the selective CB2 receptor antagonist SR144528, but not by the CB1 receptor antagonist SR141716A. This activity of JWH-015 was synergistic with that of the 5-lipoxygenase (5-LOX) inhibitor REV 5901. 4 Cannabinoids inhibited secretion of IL-1beta and tumor necrosis factor-alpha (TNF-alpha) by stimulated THP-1 cells, but these effects could not be directly correlated with their antineurotoxic activity. 5 Specific CB2 receptor ligands could be useful anti-inflammatory agents, while avoiding the neurotoxic and psychoactive effects of CB1 receptor ligands such as Delta(9)-THC.  (+info)

(5/1474) Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets.

Delta9-tetrahydrocannabinol (delta9-THC) is an effective anti-emetic; however, other potential gastrointestinal therapeutic effects of delta9-THC are less well-known. Here, we report a role of delta9-THC in a vago-vagal reflex that can result in gastro-oesophageal reflux, that is, gastric distension-evoked lower oesophageal sphincter (LOS) relaxation. Oesophageal, LOS and gastric pressures were measured using a miniaturized, manometric assembly in decerebrate, unanaesthetized ferrets.Gastric distension (30 ml) evoked LOS relaxation (70 +/- 8% decrease from baseline). Delta9-THC administered systemically (0.2 mg kg-1, iv.) or directly to the dorsal hindbrain surface (0.002 mg),significantly attenuated the nadir of the gastric distention-evoked LOS relaxation, and time to reach maximal response. Similar increases to maximal effect were observed after treatment with the cannabinoid receptor agonist WIN 55,212-2 (0.2 mg kg-1 iv.). The effect of systemic delta9-THC on gastric distention-evoked LOS relaxation was reversed by a selective cannabinoid1 (CBI) receptor antagonist, SR141617A (1 mg kg-1 i.v.). Since this reflex is vagally mediated, we used a CB1 receptor antiserum and immunocytochemistry to determine its distribution in ferret vagal circuitry. CBI receptor staining was present in cell bodies within the area postrema, nucleus tractus solitarius (NTS) and nodose ganglion. Intense terminal-like staining was noted within the NTS and dorsal motor vagal nucleus (DMN). Neither nodose ganglionectomy nor vagotomy altered the CB1 receptor terminal-like staining in the dorsal vagal complex. Retrogradely labelled gastric- or LOS-projecting DMN neurones did not express CBI receptors within their soma. Therefore, CBI receptor staining in the NTS and DMN is not due to primary vagal afferents or preganglionic neurones. These novel findings suggest that delta9-THC can modulate reflex LOS function and that the most likely site of action is via the CBI receptor within the NTS. This effect of delta9-THC may have implications in treatment of gastro-oesophageal reflux and other upper gut disorders.  (+info)

(6/1474) Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon.

The effects of cannabinoid receptor agonists and antagonists on smooth muscle resting membrane potentials and on membrane potentials following electrical neuronal stimulation in a myenteric neuron/smooth muscle preparation of wild-type and cannabinoid receptor type 1 (CB1)-deficient mice were investigated in vitro. Double staining for CB1 and nitric oxide synthase (neuronal) was performed to identify the myenteric CB1-expressing neurons. Focal electrical stimulation of the myenteric plexus induced a fast (f) excitatory junction potential (EJP) followed by a fast and a slow (s) inhibitory junction potential (IJP). Treatment of wild-type mice with the endogenous CB1 receptor agonist anandamide reduced EJP while not affecting fIJP and sIJP. EJP was significantly higher in CB1-deficient mice than in wild-type littermate controls, and anandamide induced no effects in CB1-deficient mice. N-arachidonoyl ethanolamide (anandamide), R-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3,-de]- 1,4-benzoxazin-6-yl]-1-naphtalenylmethanone, a synthetic CB1 receptor agonist, nearly abolished EJP and significantly reduced the fIJP in wild-type mice. N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-caroxa mide (SR141716A), a CB1-specific receptor antagonist, was able to reverse the agonist effects induced in wild-type mice. SR141716A, when given alone, significantly increased EJP in wild-type mice without affecting IJP in wild-type and EJP in CB1-deficient mice. Interestingly, SR141716A reduced fIJP in CB1-deficient mice. In the mouse colon, nitrergic myenteric neurons do not express CB1, implying that CB1 is expressed in cholinergic neurons, which is in line with the functional data. Finally, excitatory and inhibitory neurotransmission in the mouse colon is modulated by activation of CB1 receptors. The significant increase in EJP in CB1-deficient mice strongly suggests a physiological involvement of CB1 in excitatory cholinergic neurotransmission.  (+info)

(7/1474) Toxicological and structural features of organophosphorus and organosulfur cannabinoid CB1 receptor ligands.

Potent cannabinoid CB1 receptor ligands include anandamide [N-(2-hydroxyethyl)arachidonamide], Delta9-tetrahydrocannabinol, and 3H-CP 55,940 at the agonist site and selected organophosphorus esters (including some pesticides) and organosulfur compounds at a proposed closely coupled "nucleophilic" site. This study considers the toxicological and structural features of alkylfluorophosphonates, benzodioxaphosphorin oxides, alkanesulfonyl fluorides, and analogs acting at the nucleophilic site. Binding at the agonist site, using3H-CP 55,940 in assays with mouse brain membranes, is inhibited byO-isopropyl dodecylfluorophosphonate (compound 2), dodecanesulfonyl fluoride (compound 14) and dodecylbenzodioxaphosphorin oxide with IC50 values of 2-11 nM. Compounds 2 and 14 are also effectivein vivo, with 84% inhibition of mouse brain CB1 binding 4 h after intraperitoneal dosage at 30 mg/kg. Compound 14-inhibited CB1 in mouse brain requires about 3-4 days for recovery of 50% activity, suggesting covalent derivatization. Delayed toxicity (mortality in 0.3-5 days) from compounds 2, 14, and octanesulfonyl fluoride (18) is more closely associated with in vivo inhibition of brain neuropathy target esterase-lysophospholipase (NTE-LysoPLA) than with that of CB1 or acetylcholinesterase. NTE-LysoPLA inhibited by sulfonyl fluorides 14 and 18 cannot "age," a proposed requirement for NTE phosphorylated by organophosphorus-delayed neurotoxicants. Several octane- and dodecanesulfonamides with N-(2-hydroxyethyl) and other substituents based on anandamide give depressed mobility and recumbent posture in mice, but the effects do not correlate with potency for CB1 inhibition in vitro. Specific toxicological responses are not clearly associated with organophosphorus- or organosulfur-induced inhibition of the proposed CB1 nucleophilic site in mouse brain. On the other hand, the most potent CB1 inhibitors examined here are also NTE-LysoPLA inhibitors and cause delayed toxicity in mice.  (+info)

(8/1474) The cannabinoid system and immune modulation.

Studies on the effects of marijuana smoking have evolved into the discovery and description of the endocannabinoid system. To date, this system is composed of two receptors, CB1 and CB2, and endogenous ligands including anandamide, 2-arachidonoyl glycerol, and others. CB1 receptors and ligands are found in the brain as well as immune and other peripheral tissues. Conversely, CB2 receptors and ligands are found primarily in the periphery, especially in immune cells. Cannabinoid receptors are G protein-coupled receptors, and they have been linked to signaling pathways and gene activities in common with this receptor family. In addition, cannabinoids have been shown to modulate a variety of immune cell functions in humans and animals and more recently, have been shown to modulate T helper cell development, chemotaxis, and tumor development. Many of these drug effects occur through cannabinoid receptor signaling mechanisms and the modulation of cytokines and other gene products. It appears the immunocannabinoid system is involved in regulating the brain-immune axis and might be exploited in future therapies for chronic diseases and immune deficiency.  (+info)