Cyclic AMP and protein kinase A stimulate Cdc42: role of A(2) adenosine receptors in human mast cells. (41/693)

The functional activity of Cdc42 is known to be regulated by proteins that control its GDP/GTP-bound state. However, there is still limited information on how Cdc42 is controlled by G-protein-coupled receptors. Adenosine receptors belong to the G-protein-coupled receptor family of cell surface receptors. Human HMC-1 mast cells express the high-affinity A(2A) and the low-affinity A(2B) subtypes of adenosine receptors known to increase intracellular cAMP levels. We found that both subtypes of A(2) adenosine receptors activate Cdc42 in HMC-1 cells. Furthermore, stimulation of adenylate cyclase with forskolin, or loading of HMC-1 with the cell-permeable cAMP analog 8-Br-cAMP, activated Cdc42. Stimulation of Cdc42 by cAMP was also observed in CHO-K1 and COS-7 cells. Protein kinase A (PKA)-mediated phosphorylation is likely involved in cAMP-dependent Cdc42 activation, because transient expression of the PKA catalytic subunit in COS-7 cells activated Cdc42. Inhibition of protein phosphatases 1 and 2A with calyculin A potentiated the effects of 5'-N-ethylcarboxamidoadenosine and 8-Br-cAMP, whereas the selective PKA inhibitor H-89 reversed the activation of Cdc42. We demonstrated that Cdc42 is a poor substrate for PKA phosphorylation in vitro and in intact cells. Our data suggest that PKA does not phosphorylate Cdc42 directly. Instead, the proteins that modulate the GDP/GTP-bound state of Cdc42 may be the primary targets of PKA phosphorylation.  (+info)

A(2A) adenosine receptor-mediated inhibition of renal injury and neutrophil adhesion. (42/693)

We sought to determine the mechanisms responsible for the reduced renal tissue injury by agonists of A(2A) adenosine receptors (A(2A)-ARs) in models of ischemia-reperfusion (I/R) injury. DWH-146e, a selective A(2A)-AR agonist, was administered subcutaneously to Sprague-Dawley rats and C57BL/6 mice via osmotic minipumps, and animals were subjected to I/R. I/R led to an increase in plasma creatinine and kidney neutrophil infiltration. Infusion of DWH-146e at 10 ng. kg(-1). min(-1) produced a 70% reduction in plasma creatinine as well as a decrease in neutrophil density in outer medulla and cortex and myeloperoxidase activity in the reperfused kidney. Myeloperoxidase activity in kidney correlated with the degree of renal injury. P-selectin and intercellular adhesion molecule 1 (ICAM-1) immunoreactivity were most prominent in endothelial cells of peritubular capillaries and interlobular arteries of cortex and outer and inner medulla of vehicle-treated mice whose kidneys were subjected to I/R. DWH-146e treatment led to a pronounced decrease in P-selectin- and ICAM-1-like immunoreactivity. These data are consistent with our hypothesis that A(2A)-AR agonists limit I/R injury due to an inhibitory effect on neutrophil adhesion.  (+info)

Why are A(2B) receptors low-affinity adenosine receptors? Mutation of Asn273 to Tyr increases affinity of human A(2B) receptor for 2-(1-Hexynyl)adenosine. (43/693)

Adenosine A(2B) receptors are known as low-affinity receptors due to their modest-to-negligible affinity for adenosine and prototypic agonists. Despite numerous synthetic efforts, 5'-N-ethylcarboxamidoadenosine (NECA) still is the reference agonist, albeit nonselective for this receptor. In our search for higher affinity agonists, we developed decision schemes to select amino acids for mutation to the corresponding residues in the most homologous, higher affinity, human A(2A) receptor. One scheme exploited knowledge on sequence alignments and modeling data and yielded three residues, V11, L58, and F59, mutation of which did not affect agonist affinity. The second scheme combined knowledge on sequence alignments and mutation data and pointed to Ala12 and Asn273. Mutation of Ala12 to threonine did not affect the affinity for NECA, (R)-N(6)-(phenylisopropyl)adenosine (R-PIA), and 2Cl Ado. The affinity of the N273Y mutant for NECA and R-PIA and for the antagonists xanthine amine congener (XAC), ZM241385, and SCH58261 was also unaltered. However, this mutant had a slightly increased affinity for a 2-substituted adenosine derivative, CGS21680. This prompted us to investigate other 2-substituted adenosines, with selectivity and high affinity for A(2A) receptors. All four compounds tested had improved affinity for the N273Y receptor. Of these, 2-(1-hexynyl)adenosine had submicromolar affinity for the N273Y receptor, 0.18 +/- 0.10 microM, with a 61-fold affinity gain over the wt receptor. In addition, the non-NECA analog (S)-PHP adenosine had an affinity of 1.7 +/- 0.5 microM for the wt receptor. The high affinity of (S)-PHP adenosine for the wt receptor suggests that further modifications at the 2-position may yield agonists with even higher affinity for A(2B) receptors.  (+info)

Adenosine A(2A) receptors mediate cardiovascular responses to hypoxia in fetal sheep. (44/693)

Nonselective adenosine (ADO) receptor antagonists block hypoxia-induced bradycardia and hypertension in fetal sheep. This study was designed to determine the ADO receptor subtype that is involved in these cardiovascular responses. In chronically catheterized fetal sheep (>0.8 term), fetal hypoxemia was induced by having the ewe breathe a hypoxic gas mixture (9% O(2)-3% CO(2)-88% N(2)) for 1 h. Intra-arterial infusion of ZM-241385, an antagonist highly selective for ADO A(2A) receptors, to eight fetuses during normoxia significantly increased mean arterial pressure (MAP) from 42.5 +/- 2.0 to 46.1 +/- 2.0 mmHg without altering heart rate (HR). Infusion of a selective antagonist of ADO A(1) receptors [1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)] elevated MAP and HR only after the infusion was terminated, although administration of the vehicle for ZM-241385 or DPCPX had no effect on MAP or HR. Isocapnic hypoxia with infusion of DPCPX or the vehicle for DPCPX or ZM-241385 produced a transient fall in HR, a rise in MAP, and a decrease in plasma volume. In contrast, ADO A(2A) receptor blockade abolished the hypoxia-induced bradycardia and hypertension and blunted the decline in plasma volume. We conclude that fetal ADO A(2A) receptors: 1) modulate AP during normoxia, and 2) mediate cardiovascular responses during acute O(2) deficiency.  (+info)

Potentiation of cytokine induction of group IIA phospholipase A(2) in rat mesangial cells by ATP and adenosine via the A2A adenosine receptor. (45/693)

1. In rat mesangial cells extracellular nucleotides were found to increase arachidonic acid release by a cytosolic phospholipase A(2) through the P2Y(2) purinergic receptor. 2. In this study we investigated the effects of ATP and UTP on interleukin-1ss (IL-1ss)-induced mRNA expression and activity of group IIA phospholipase A(2) (sPLA(2)-IIA) in rat mesangial cells. 3. Treatment of cells for 24 h with extracellular ATP potentiated IL-1ss-stimulated sPLA(2)-IIA induction, whereas UTP had no effect. 4. We obtained the following evidence that the P2Y(2) receptor is not involved in the potentiation of sPLA(2)-IIA induction: (i) ATP-gamma-S had no enhancing effect; (ii) suramin, a P(2) receptor antagonist, did not inhibit ATP-mediated potentiation; (iii) inhibition of degradation of extracellular nucleotides by the 5'-ectonucleotidase inhibitor AOPCP did not enhance sPLA(2)-IIA induction and (iv) adenosine deaminase treatment completely abolished the ATP-mediated potentiation of sPLA(2)-IIA induction. 5. In contrast, treatment of mesangial cells with adenosine or the A2A receptor agonist CGS 21680 mimicked the effects of ATP in enhancing IL-1ss-stimulated sPLA(2)-IIA induction, whereas the specific A2A receptor antagonist ZM 241385 completely abolished the potentiating effect of ATP or adenosine. 6. The protein kinase A inhibitor Rp-8-Br-cyclic AMPS dose-dependently inhibited the enhancing effect of ATP or adenosine indicating the participation of an adenosine receptor-mediated cyclic AMP-dependent signalling pathway. 7. These data indicate that ATP mediates proinflammatory long-term effects in rat mesangial cells via its degradation product adenosine through the A2A receptor resulting in potentiation of sPLA(2)-IIA induction.  (+info)

The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice. (46/693)

The A(2A)R is largely coexpressed with D(2)Rs and enkephalin mRNA in the striatum where it modulates dopaminergic activity. Activation of the A(2A)R antagonizes D(2)R-mediated behavioral and neurochemical effects in the basal ganglia through a mechanism that may involve direct A(2A)R-D(2)R interaction. However, whether the D(2)R is required for the A(2A)R to exert its neural function is an open question. In this study, we examined the role of D(2)Rs in A(2A)R-induced behavioral and cellular responses, by using genetic knockout (KO) models (mice deficient in A(2A)Rs or D(2)Rs or both). Behavioral analysis shows that the A(2A)R agonist 2-4-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine reduced spontaneous as well as amphetamine-induced locomotion in both D(2) KO and wild-type mice. Conversely, the nonselective adenosine antagonist caffeine and the A(2A)R antagonist 8-(3-chlorostyryl)caffeine produced motor stimulation in mice lacking the D(2)R, although the stimulation was significantly attenuated. At the cellular level, A(2A)R inactivation counteracted the increase in enkephalin expression in striatopallidal neurons caused by D(2)R deficiency. Consistent with the D(2) KO phenotype, A(2A)R inactivation partially reversed both acute D(2)R antagonist (haloperidol)-induced catalepsy and chronic haloperidol-induced enkephalin mRNA expression. Together, these results demonstrate that A(2A)Rs elicit behavioral and cellular responses despite either the genetic deficiency or pharmacological blockade of D(2)Rs. Thus, A(2A)R-mediated neural functions are partially independent of D(2)Rs. Moreover, endogenous adenosine acting at striatal A(2A)Rs may be most accurately viewed as a facilitative modulator of striatal neuronal activity rather than simply as an inhibitory modulator of D(2)R neurotransmission.  (+info)

Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. (47/693)

Adenosine vasoconstricts preglomerular arterioles via adenosine A1 receptors. Because adenosine also activates adenosine A2 receptors, its overall renal vascular actions are complex and not fully understood. The present study was performed to determine the relative contributions of adenosine A1 and A2a receptors to the responsiveness of the renal microvasculature to adenosine. Afferent and efferent arteriolar diameters were monitored in vitro using the blood-perfused rat juxtamedullary nephron preparation. Basal afferent and efferent arteriolar diameters averaged 17.1 +/- 0.5 (n = 35) and 17.8 +/- 0.5 (n = 20) microm, respectively. Superfusion with 0.1 and 1 micromol/l adenosine did not significantly alter afferent and efferent arteriolar diameters; however, 10 micromol/l adenosine significantly reduced afferent and efferent arteriolar diameters (-8.2 +/- 0.8 and -5.7 +/- 0.6%, respectively). The afferent and efferent arteriolar vasoconstrictor responses to adenosine waned at a dose of 100 micromol/l, such that diameters returned to values not significantly different from control within 2 min. During adenosine A1 receptor blockade with 8-noradamantan-3-yl-1,3-dipropylxanthine (KW-3902: 10 micromol/l), 10 and 100 micromol/l adenosine significantly increased afferent diameter by, respectively, 8.1 +/- 1.2 and 13.7 +/- 1.3% (n = 14) and efferent arteriolar diameter by 6.4 +/- 1.3 and 9.3 +/- 1.2% (n = 8). The afferent and efferent arteriolar vasodilatory responses to adenosine in the presence of KW-3902 were significantly attenuated by addition of the adenosine A2a receptor antagonist 1,3-dipropyl-7-methyl-8-(3,4-dimethoxystyryl)xanthine (KF-17837: 15 micromol/l, n = 7 and 6, respectively). The addition of KF-17837 alone significantly enhanced afferent (n = 15) and efferent (n = 6) arteriolar vasoconstrictor responses to 1, 10, and 100 micromol/l adenosine. These results indicate the presence of adenosine A1 and A2a receptors on afferent and efferent arterioles of juxtamedullary nephrons, such that adenosine A2a receptor-mediated vasodilation partially buffers adenosine-induced vasoconstriction in both pre- and postglomerular segments of the renal microvasculature.  (+info)

Cyclic AMP-dependent inhibition of human neutrophil oxidative activity by substituted 2-propynylcyclohexyl adenosine A(2A) receptor agonists. (48/693)

Novel 2-propynylcyclohexyl-5'-N:-ehtylcarboxamidoadenosines, trans-substituted in the 4-position of the cyclohexyl ring, were evaluated in binding assays to the four subtypes of adenosine receptors (ARs). Two esters, 4-(3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2 -yl]-prop-2-ynyl)-cyclohexanecarboxylic acid methyl ester (ATL146e) and acetic acid 4-(3-[6-amino-9-(5-ethylcarbamoyl-3, 4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl] -prop-2-ynyl)-cyclohexylmethyl ester (ATL193) were >50 x more potent than 2-[4-(2-carboxyethyl)phenethylamino]-5'-N:-ethylcarboxamidoadenosine (CGS21680) for human A(2A) AR binding. Human A(2A) AR affinity for substituted cyclohexyl-propynyladenosine analogues was inversely correlated with the polarity of the cyclohexyl side chain. There was a comparable order of potency for A(2A) AR agonist stimulation of human neutrophil [cyclic AMP](i), and inhibition of the neutrophil oxidative burst. ATL146e and CGS21680 were approximately equipotent agonists of human A(3) ARs. We measured the effects of selective AR antagonists on agonist stimulated neutrophil [cyclic AMP](i) and the effect of PKA inhibition on A(2A) AR agonist activity. ATL193-stimulated neutrophil [cyclic AMP](i) was blocked by antagonists with the potency order: ZM241385 (A(2A)-selective)>MRS1220 (A(3)-selective)>>N-(4-Cyano-phenyl)-2-[4-(2,6-dioxo-1,3-dipropyl-2,3,4,5,6,7-hex ahydro-1H-purin-8-yl)-phenoxy]-acetamide (MRS1754; A(2B)-selective) approximately 8-(N-methylisopropyl)amino-N(6)-(5'-endohydroxy-endonorbornyl)-9-methyladenine (WRC0571; A(1)-selective). The type IV phosphodiesterase inhibitor, rolipram (100 nM) potentiated ATL193 inhibition of the oxidative burst, and inhibition by ATL193 was counteracted by the PKA inhibitor H-89. The data indicate that activation of A(2A)ARs inhibits neutrophil oxidative activity by activating [cyclic AMP](i)/PKA.  (+info)