Reexamination of amphotropic murine leukemia virus neurovirulence: neural stem cell-mediated microglial infection fails to induce acute neurodegeneration. (65/699)

The 4070A amphotropic murine leukemia virus (A-MuLV) has been variably reported to harbor neurovirulence determinants within its env gene. In this report we reexamined this issue by applying two approaches previously demonstrated to amplify murine leukemia virus neurovirulence. The first approach involved introducing the 4070A env gene into the background of Friend virus clone FB29 to enhance peripheral virus replication kinetics and central nervous system entry. The resulting chimeric virus, FrAmE, exhibited widespread vascular infection throughout the central nervous system (CNS); however, parenchymal infection was quite limited. Neither clinical neurological signs nor spongiform neurological changes accompanied FrAmE CNS infection. To overcome this CNS entry limitation, 4070A and FrAmE were delivered directly into the CNS via transplantation of infected C17.2 neural stem cells (NSCs). Significantly, NSC dissemination of either 4070A or FrAmE resulted in widespread, high-level amphotropic virus expression within the CNS parenchyma, including the infection of microglia, the critical target required for inducing neurodegeneration. Despite the extensive CNS infection, no associated clinical neurological signs or acute neuropathological changes were observed. Interestingly, we observed the frequent appearance of circulating polytropic (MCF) virus in the serum of amphotropic virus-infected animals. However, neither peripheral inoculation of an amphotropic/MCF virus mixture nor transplantation of NSCs expressing both amphotropic and MCF viruses induced acute clinical neurological signs or spongiform neuropathology. Thus, the results generated in this study suggest that the 4070A env gene is not inherently neurovirulent. However, the frequent appearance of endogenous MCF viruses suggests the possibility that the interactions of amphotropic viruses with endogenous retroviral elements could contribute to the development of retrovirus-induced neurodegenerative disease.  (+info)

Chimeric recombinant hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes. (66/699)

Many viral and bacterial pathogens establish infections through mucosal surfaces in their initial stage. However, only a few nonreplicating molecules successfully induce strong mucosal immune reaction without the addition of adjuvants by oral administration. To overcome this difficulty, we investigated whether hepatitis E virus-like particles (HEV-VLPs) could be utilized as a carrier molecule for foreign antigenic epitopes and to stimulate mucosal immunity without the need for adjuvants. To accomplish this goal, we incorporated a B cell epitope tag, consisting of 11 amino acids at the C-terminal of HEV-VLP. The chimeric VLP showed morphology similar to that of the mature HEV virion and VLP. The inserted epitope was reactive with a specific monoclonal antibody in the VLP form, suggesting that it was exposed on the surface of the VLP. After oral administration without adjuvant, this chimeric HEV induced significant levels of specific IgG and IgA to both the inserted epitope and HEV-VLP in intestinal secretions. These humoral immune responses were observed as early as 2 weeks after the first immunization. These results suggest the potential of HEV-VLP as a mucosal vaccine carrier vehicle for the presentation of antigenic epitopes through oral administration.  (+info)

The 3'-untranslated region of RNA1 as a primary determinant of temperature sensitivity of Red clover necrotic mosaic virus Canadian strain. (67/699)

Red clover necrotic mosaic virus Canadian strain (RCNMV-Can) induces symptoms on host plants at 17 degrees C, but not at 25 degrees C. We investigated the temperature sensitivity of RCNMV-Can in Nicotiana benthamiana plants and protoplasts using infectious transcripts of genomic RNAs 1 and 2. Viral RNAs accumulated in both inoculated and noninoculated leaves at 17 degrees C, whereas no viral RNAs were detected at 25 degrees C in either inoculated or noninoculated leaves. Similar temperature sensitivity in RNA accumulation was observed in protoplasts, and no viral RNAs were detected at temperatures above 22 degrees C. These results indicate that the temperature sensitivity of RCNMV-Can occurs at an early stage of infection, including during RNA replication. Using reassortant viruses and chimeric RNAs 1 between RCNMV-Can and the RCNMV Australian strain, which accumulates viral RNAs at nonpermissive temperatures for RCNMV-Can, we demonstrated that a viral determinant for the temperature sensitivity resides in the 3'-untranslated region of RNA1.  (+info)

Nutritional status in relation to the efficacy of the rhesus-human reassortant, tetravalent rotavirus vaccine (RRV-TV) in infants from Belem, para state, Brazil. (68/699)

The rhesus-human reassortant, tetravalent rotavirus vaccine (RRV-TV) was licensed for routine use in the United States of America but it was recently withdrawn from the market because of its possible association with intussusception as an adverse event. The protective efficacy of 3 doses of RRV-TV, in its lower-titer (4 x 10(4) pfu/dose) formulation, was evaluated according to the nutritional status of infants who participated in a phase III trial in Belem, Northern Brazil. A moderate protection conferred by RRV-TV was related to weight-for-age Z-scores (WAZ) greater than -1 only, with rates of 38% (p = 0.04) and 40% (p = 0.04) for all- and- pure rotavirus diarrhoeal cases, respectively. In addition, there was a trend for greater efficacy (43%, p = 0.05) among infants reaching an height-for-age Z-score (HAZ) of > -1. Taking WAZ, HAZ and weight-for-height Z-score (WHZ) indices 0.05) if both placebo and vaccine groups are compared. There was no significant difference if rates of mixed and pure rotavirus diarrhoeal cases are compared in relation to HAZ, WAZ and weight-for-height Z-score (WHZ) indices. Although a low number of malnourished infants could be identified in the present study, our data show some evidence that malnutrition may interfere with the efficacy of rotavirus vaccines in developing countries.  (+info)

Characterization of nontypeable rotavirus strains from the United States: identification of a new rotavirus reassortant (P2A[6],G12) and rare P3[9] strains related to bovine rotaviruses. (69/699)

Among 1316 rotavirus specimens collected during strain surveillance in the United States from 1996 to 1999, most strains (95%) belonged to the common types (G1 to G4 and G9), while 5% were mixed infections of common serotypes, rare strains, or not completely typeable. In this report, 2 rare (P[9],G3) and 2 partially typeable (P[6],G?; P[9],G?) strains from that study were further characterized. The P[6] strain was virtually indistinguishable by hybridization analysis in 10 of its 11 gene segments with recently isolated P2A[6],G9 strains (e.g., U.S.1205) from the United States, but had a distinct VP7 gene homologous (94.7% a.a. and 90.2% nt) to the cognate gene from P1B[4],G12 reference strain L26. Thus, this serotype P2A[6],G12 strain represents a previously unrecognized reassortant. Three P3[9] strains were homologous (97.8-98.2% aa) in the VP8 region of VP4 to the P3[9],G3 feline-like reference strain AU-1, but had a high level of genome homology to Italian bovine-like, P3[9],G3 and P3[9],G6 rotavirus strains. Two of the U.S. P3[9] strains were confirmed to be type G3 (97.2-98.2% VP7 aa homology with reference G3 strain AU-1), while the other was most similar to Italian bovine-like strain PA151 (P3[9],G6), sharing 99.0% a.a. homology in VP7. Cross-neutralization studies confirmed all serotype assignments and represented the first detection of these rotavirus serotypes in the United States. The NSP4 genes of all U.S. P3[9] strains and rotavirus PA151 were most closely related to the bovine and equine branch within the DS-1 lineage, consistent with an animal origin. These results demonstrate that rare strains with P and G serotypes distinct from those of experimental rotavirus vaccines circulate in the United States, making it important to understand whether current vaccine candidates protect against these strains.  (+info)

Innate differences between simian-human immunodeficiency virus (SHIV)(KU-2)-infected rhesus and pig-tailed macaques in development of neurological disease. (70/699)

Neurological disease associated with HIV infection results from either primary replication of the virus or a combination of virus infection and replication of opportunistic pathogens in the CNS. Recent studies indicate that the primary infection is mediated mainly by viruses that utilize CCR5 as the coreceptor; it is not known whether the syndrome can be mediated by viruses that use the CXCR4 coreceptor. The macaque model of the disease using simian immunodeficiency virus (SIV) has confirmed that CCR5-using viruses such as SIV(mac)251 can cause primary disease in the CNS. In this report we have examined the role of simian-human immunodeficiency virus (SHIV)(KU-2), a CXCR4 virus which replicates productively in rhesus macrophages, in causing CNS disease. A survey of archival brain tissues from SHIV(KU-2)-infected rhesus and pig-tailed macaques that succumbed to AIDS showed productive viral replication in the CNS of 10 of 14 rhesus animals. Eight of these 10 had additional infections with opportunistic pathogens. In contrast, 21 of 22 pig-tailed macaques had no evidence of productive viral infection in the brain. In an earlier study we had shown that inoculation of SHIV-infected rhesus macaques with eggs of Schistosoma mansoni, a potent inducer of IL-4, resulted in enhanced replication of the virus in tissue macrophages. In the present study, we compared the replication of the virus in macrophages from normal rhesus and pig-tailed macaques and determined further whether exogenous IL-4 could cause enhancement of virus replication in these cells. These studies showed that the virus replicated productively in rhesus macrophages, and this was enhanced significantly after recombinant macaque IL-4 was added to the medium. IL-4 also caused enhancement of virus production in macrophages isolated from virus-infected animals. In contrast, the virus replicated only minimally in pig-tailed macaque macrophages and supplemental IL-4 had negligible effects. The data thus suggested that failure of pig-tailed macaques to develop encephalitis was due to the innate resistance of macrophages from this species of macaque to support replication of SHIV(KU-2). The ability of the virus to replicate in the brains of rhesus macaques was dependent on coinfection in the brain with opportunistic pathogens which presumably induced both macrophages and IL-4 in the CNS microenvironment. A supportive role for IL-4 in the CNS disease was suggested by the presence of IL-4 RNA in the encephalitic brains of rhesus macaques and reduced levels of this cytokine in the brains from pig-tailed macaques.  (+info)

Presence of Intact vpu and nef genes in nonpathogenic SHIV is essential for acquisition of pathogenicity of this virus by serial passage in macaques. (71/699)

Use of the macaque model of human immunodeficiency virus (HIV) pathogenesis has shown that the accessory genes nef and vpu are important in the pathogenicity of simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV). We examined the ability of two nonpathogenic SHIVs, SHIV(PPC) and DeltavpuDeltanefSHIV(PPC), to gain pathogenicity by rapid serial passage in macaques. In this study, each virus was passaged by blood intravenously four times at 4-week intervals in macaques. Animals were monitored for 40 weeks for levels of CD4 T cells and quantitative measures of virus infection. DeltavpuDeltanefSHIV(PPC) maintained a limited phase of productive replication in the four animals, with no loss of CD4(+) T cells, whereas SHIV(PPC) became more pathogenic in later passages, judging by plasma viral load and viral mRNA in lymph nodes, infectious peripheral blood mononuclear cells and CD4(+) T cell loss. The nef, LTR, and env of the SHIV(PPC) viruses underwent numerous mutations, compared to DeltavpuDeltanefSHIV(PPC). This study confirms the seminal role that nef, LTR, and vpu could play in regulation of pathogenesis of HIV infection.  (+info)

Rotavirus genome segment 7 (NSP3) is a determinant of extraintestinal spread in the neonatal mouse. (72/699)

We used the neonatal mouse model of rotavirus infection to study extraintestinal spread following oral inoculation. Five-day-old pups were inoculated with either SA11-Cl3, SA11-Cl4, SA11-4F, RRV, or B223. By using virus detection in the liver as a proxy determination for extraintestinal spread, rotavirus strains capable of extraintestinal spread at high frequency (rhesus rotavirus [RRV]) and very low frequency (SA11-Cl4) were identified. Both strains productively infected the gastrointestinal tract. Oral inoculation of mice with RRV/ SA11-Cl4 reassortants and determination of virus titers in the gut and liver revealed that the extraintestinal spread phenotype segregated with RRV genome segment 7 to a high level of significance (P = 10(-3)). RRV segment 7 also segregated with the growth of virus in the gut (P = 10(-5)). Although infection of the gut was clearly required for tropism to the liver, there was no correlation between virus titers in the gut and detection of virus in the liver. Five days after intraperitoneal administration to bypass the gut barrier to virus spread, RRV and SA11-Cl4 both were recovered in the liver. However, only RRV was found in the liver following subcutaneous inoculation, suggesting that this peripheral site presented a similar barrier to virus spread as the gut. Sequence analysis of segment 7 from parental RRV and SA11-Cl4 and selected reassortants showed that (i) amino acid differences were distributed throughout the coding sequences and not concentrated in any particular functional motif and (ii) parental sequence was preserved in reassortants. These data support the hypothesis that NSP3, coded for by genome segment 7, plays a significant role in viral growth in the gut and spread to peripheral sites. The mechanism of NSP3-mediated tropism is under investigation.  (+info)