Pig-tailed macaques infected with human immunodeficiency virus (HIV) type 2GB122 or simian/HIV89.6p express virus in semen during primary infection: new model for genital tract shedding and transmission. (41/699)

Characterizing human immunodeficiency virus (HIV) expression in semen during primary infection remains essential to understanding the risk of sexual transmission. This investigation represents the first systematic evaluation of male genital tract shedding to use a nonhuman primate model, including the impact of exposure route and viral virulence. Male macaques were inoculated with either a chronic disease-causing virus (HIV-2(GB122); n=4 intravenous; n=4 intrarectal) or an acutely pathogenic simian/HIV strain (SHIV(89.6P); n=2 intravenous). All macaques were systemically infected, and seminal plasma virion-associated RNA (vRNA) levels were approximately 10-fold lower than those in blood. In HIV-2(GB122) infection, seminal virus was delayed by 1-2 weeks compared with that in blood. Intrarectal inoculation resulted in a shorter duration of seminal vRNA expression and intermittent seminal cell provirus. No delays, higher peaks ( approximately 50-fold), or longer durations in seminal virus expression were noted for SHIV(89.6P) infection. This novel model definitively establishes that virus dissemination results in early peak seminal levels and provides a basis for evaluating interventions targeting male genital tract expression.  (+info)

Hypertrophy, hyperplasia, and infectious virus in gut-associated lymphoid tissue of mice after oral inoculation with simian-human or bovine-human reassortant rotaviruses. (42/699)

Oral inoculation of infants with a vaccine that contains simian-human reassortant rotaviruses has been found to be a rare cause of intussusception. Because intussusception can be associated with enlargement of gut-associated lymphoid tissue, we studied the capacity of simian-human and bovine-human reassortant rotaviruses to cause lymphoid hypertrophy and hyperplasia of Peyer's patches (PP) of adult BALB/c mice. Neither hypertrophy nor hyperplasia was detected in PP after oral inoculation with simian-human or bovine-human reassortant rotaviruses. However, infectious virus was detected in PP and mesenteric lymph nodes after oral inoculation with simian, but not bovine, reassortant rotaviruses. Implications of these findings on the pathogenesis of intussusception are discussed.  (+info)

Pathogenicity of a natural recombinant associated with ageratum yellow vein disease: implications for geminivirus evolution and disease aetiology. (43/699)

Yellow vein disease of Ageratum conyzoides is caused by a viral DNA complex consisting of the genomic component (DNA A) of the monopartite begomovirus Ageratum yellow vein virus (AYVV, family: Geminiviridae) and a small satellite-like DNA beta component. AYVV DNA A is unable to induce symptoms in this host alone but can systemically infect A. conyzoides in which it accumulates to low levels. Here, we demonstrate that the yellow vein phenotype can also be produced by co-inoculating A. conyzoides with AYVV DNA A and recDNA-Abeta17, a naturally occurring recombinant of approximately the same size as DNA beta that contains sequences from both DNA A and DNA beta. Symptoms induced by DNA A and recDNA-Abeta17 in A. conyzoides and Nicotiana glutinosa are qualitatively similar to those associated with DNA A and DNA beta although milder. Recombination between DNA A and DNA beta to produce a chimera resembling recDNA-Abeta17 was observed after whitefly transmission of the disease in A. conyzoides. Hence, such recombination events are likely to occur frequently, implying that recombinants will normally be associated with this type of disease complex in the field. Possible implications of these findings for the evolution of begomoviruses and the aetiology of their diseases are discussed.  (+info)

A simian human immunodeficiency virus with a nonfunctional Vpu (deltavpuSHIV(KU-1bMC33)) isolated from a macaque with neuroAIDS has selected for mutations in env and nef that contributed to its pathogenic phenotype. (44/699)

Previous studies have shown that passage of nonpathogenic SHIV-4 through a series of macaques results in the selection of variants of the virus that are capable of causing rapid subtotal loss of CD4(+) T cells and AIDS within 6-8 months following inoculation into pig-tailed macaques. Using a pathogenic variant of SHIV-4 known as SHIV(KU-1bMC33), we reported that a mutant of this virus with the majority of the vpu deleted was still capable of causing profound CD4(+) T cell loss and neuroAIDS in pig-tailed macaques (McCormick-Davis et al., 2000, Virology 272, 112-116). In this study, we have analyzed the tissue-specific changes in the env and nef in one macaque that developed neuroAIDS (macaque 50 O) and in three macaques that developed only a moderate or no significant loss of CD4(+) T cells and no neurological disease (macaques 50 Y, 20220, 20228) following inoculation with DeltavpuSHIV(KU-1bMC33). Sequence analysis of the gp120 region of env isolated from lymphoid tissues (lymph node and spleen) of macaques 50 Y, 20220, and 20228 revealed no consensus amino acid substitutions. In contrast, analysis of the gp120 sequences isolated from lymphoid and CNS tissues (parietal cortex, basal ganglia, and pons) of macaque 50 O revealed numerous amino acid substitutions. The significance of the amino acid substitutions in gp120 was supported by neutralization assays which showed that the virus isolated from the lymph node of macaque 50 O was neutralization resistant compared to the parental SHIV(KU-1bMC33). Analysis of changes in the nef gene from macaque 50 O revealed in-frame deletions in Nef that ranged from 4 to 13 amino acids in length, whereas the nef genes isolated from the other three macaques revealed no deletions or consensus amino acid substitutions. Inoculation of the virus isolated from the lymph node of the macaque which developed neuroAIDS, SHIV(50OLNV), into four pig-tailed macaques resulted in a severe loss of the circulating CD4(+) T cells within 2 weeks postinoculation, which was maintained for up to 20 weeks postinoculation, confirming that this virus had indeed become more pathogenic in pig-tailed macaques. Taken together, these observations suggest that DeltavpuSHIV(KU-1bMC33) has a low pathogenic phenotype in macaques but that individual pig-tailed macaques can select for additional mutations within the Env and Nef which can compensate for the lack of an intact Vpu and ultimately increase its pathogenicity.  (+info)

Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. (45/699)

The G and P genotypes of 3,601 rotavirus strains collected in the United Kingdom between 1995 and 1999 were determined (M. Iturriza-Gomara et al., J. Clin. Microbiol. 38:4394-4401, 2000). In 95.4% of the strains the most common G and P combinations, G1P[8], G2P[4], G3P[8], and G4P[8], were found. A small but significant number (2%) of isolates from the remaining strains were reassortants of the most common cocirculating strains, e.g., G1P[4] and G2P[8]. Rotavirus G9P[6] and G9P[8] strains, which constituted 2.7% of all viruses, were genetically closely related in their G components, but the P components of the G9P[8] strains were very closely related to those of cocirculating strains of the more common G types (G1, G3, and G4). In conclusion, genetic interaction by reassortment among cocirculating rotaviruses is not a rare event and contributes significantly to their overall diversity.  (+info)

Avian reovirus major mu-class outer capsid protein influences efficiency of productive macrophage infection in a virus strain-specific manner. (46/699)

We determined that the highly pathogenic avian reovirus strain 176 (ARV-176) possesses an enhanced ability to establish productive infections in HD-11 avian macrophages compared to avian fibroblasts. Conversely, the weakly pathogenic strain ARV-138 shows no such macrophagotropic tendency. The macrophage infection capability of the two viruses did not reflect differences in the ability to either induce or inhibit nitric oxide production. Moderate increases in the ARV-138 multiplicity of infection resulted in a concomitant increase in macrophage infection, and under such conditions the kinetics and extent of the ARV-138 replication cycle were equivalent to those of the highly infectious ARV-176 strain. These results indicated that both viruses are apparently equally capable of replicating in an infected macrophage, but they differ in the ability to establish productive infections in these cells. Using a genetic reassortant approach, we determined that the macrophagotropic property of ARV-176 reflects a post-receptor-binding step in the virus replication cycle and that the ARV-176 M2 genome segment is required for efficient infection of HD-11 cells. The M2 genome segment encodes the major mu-class outer capsid protein (muB) of the virus, which is involved in virus entry and transcriptase activation, suggesting that a host-specific influence on ARV entry and/or uncoating may affect the likelihood of the virus establishing a productive infection in a macrophage cell.  (+info)

Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. (47/699)

We previously reported construction of a chimeric yellow fever-dengue type 2 virus (YF/DEN2) and determined its safety and protective efficacy in rhesus monkeys (F. Guirakhoo et al., J. Virol. 74:5477-5485, 2000). In this paper, we describe construction of three additional YF/DEN chimeras using premembrane (prM) and envelope (E) genes of wild-type (WT) clinical isolates: DEN1 (strain PUO359, isolated in 1980 in Thailand), DEN3 (strain PaH881/88, isolated in 1988 in Thailand), and DEN4 (strain 1228, isolated in 1978 in Indonesia). These chimeric viruses (YF/DEN1, YF/DEN3, and YF/DEN4) replicated to ~7.5 log(10) PFU/ml in Vero cells, were not neurovirulent in 3- to 4-week-old ICR mice inoculated by the intracerebral route, and were immunogenic in monkeys. All rhesus monkeys inoculated subcutaneously with one dose of these chimeric viruses (as monovalent or tetravalent formulation) developed viremia with magnitudes similar to that of the YF 17D vaccine strain (YF-VAX) but significantly lower than those of their parent WT viruses. Eight of nine monkeys inoculated with monovalent YF/DEN1 -3, or -4 vaccine and six of six monkeys inoculated with tetravalent YF/DEN1-4 vaccine seroconverted after a single dose. When monkeys were boosted with a tetravalent YF/DEN1-4 dose 6 months later, four of nine monkeys in the monovalent YF/DEN groups developed low levels of viremia, whereas no viremia was detected in any animals previously inoculated with either YF/DEN1-4 vaccine or WT DEN virus. An anamnestic response was observed in all monkeys after the second dose. No statistically significant difference in levels of neutralizing antibodies was observed between YF virus-immune and nonimmune monkeys which received the tetravalent YF/DEN1-4 vaccine or between tetravalent YF/DEN1-4-immune and nonimmune monkeys which received the YF-VAX. However, preimmune monkeys developed either no detectable viremia or a level of viremia lower than that in nonimmune controls. This is the first recombinant tetravalent dengue vaccine successfully evaluated in nonhuman primates.  (+info)

Influenza virus ns1 protein induces apoptosis in cultured cells. (48/699)

The importance of influenza viruses as worldwide pathogens in humans, domestic animals, and poultry is well recognized. Discerning how influenza viruses interact with the host at a cellular level is crucial for a better understanding of viral pathogenesis. Influenza viruses induce apoptosis through mechanisms involving the interplay of cellular and viral factors that may depend on the cell type. However, it is unclear which viral genes induce apoptosis. In these studies, we show that the expression of the nonstructural (NS) gene of influenza A virus is sufficient to induce apoptosis in MDCK and HeLa cells. Further studies showed that the multimerization domain of the NS1 protein but not the effector domain is required for apoptosis. However, this mutation is not sufficient to inhibit apoptosis using whole virus.  (+info)