Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. (25/16336)

We have previously shown that nitric oxide (NO) stimulates apoptosis in different human neoplastic lymphoid cell lines through activation of caspases not only via CD95/CD95L interaction, but also independently of such death receptors. Here we investigated mitochondria-dependent mechanisms of NO-induced apoptosis in Jurkat leukemic cells. NO donor glycerol trinitrate (at the concentration, which induces apoptotic cell death) caused (1) a significant decrease in the concentration of cardiolipin, a major mitochondrial lipid; (2) a downregulation in respiratory chain complex activities; (3) a release of the mitochondrial protein cytochrome c into the cytosol; and (4) an activation of caspase-9 and caspase-3. These changes were accompanied by an increase in the number of cells with low mitochondrial transmembrane potential and with a high level of reactive oxygen species production. Higher resistance of the CD95-resistant Jurkat subclone (APO-R) cells to NO-mediated apoptosis correlated with the absence of cytochrome c release and with less alterations in other mitochondrial parameters. An inhibitor of lipid peroxidation, trolox, significantly suppressed NO-mediated apoptosis in APO-S Jurkat cells, whereas bongkrekic acid (BA), which blocks mitochondrial permeability transition, provided only a moderate antiapoptotic effect. Transfection of Jurkat cells with bcl-2 led to a complete block of apoptosis due to the prevention of changes in mitochondrial functions. We suggest that the mitochondrial damage (in particular, cardiolipin degradation and cytochrome c release) induced by NO in human leukemia cells plays a crucial role in the subsequent activation of caspase and apoptosis.  (+info)

Increased oxidative stress in the RAW 264.7 macrophage cell line is partially mediated via the S-nitrosothiol-induced inhibition of glutathione reductase. (26/16336)

We investigated whether endogenously or exogenously produced nitric oxide (NO) can inhibit cellular glutathione reductase (GR) via the formation of S-nitrosothiols to decrease cellular glutathione (GSH) and increase oxidative stress in RAW 264.7 cells. The specificity of this inhibition was demonstrated by addition of a NO-synthase inhibitor, and met- or oxyhemoglobin. Using isolated GR we found that only certain NO donors inhibit this enzyme via S-nitrosothiol. Furthermore, we found that cellular GSH decrease is paralleled by an increase of superoxide anion production. Our results show that the GR enzyme is a potential target of S-nitrosothiols to decrease cellular GSH levels and to induce oxidative stress in macrophages.  (+info)

Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. (27/16336)

Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer's disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer's disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer's disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid beta-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations.  (+info)

Tightly regulated and inducible expression of rabbit CYP2E1 using a tetracycline-controlled expression system. (28/16336)

A tetracycline (Tc)-controlled gene expression system that quantitatively controls gene expression in eukaryotic cells () was used to express cytochrome P-450 2E1 (CYP2E1) in HeLa cells in culture. The rabbit CYP2E1 cDNA was subcloned into the Tc-controlled expression vector (pUHD10-3) and transfected into a HeLa cell line constitutively expressing the Tc-controlled transactivator, a positive regulator of expression in the absence of Tc. The expression of CYP2E1 was tightly regulated. There was a time-dependent induction of CYP2E1 after removal of Tc. In the absence of Tc, the enzyme was induced more than 100-fold and expressed about 18 pmol of CYP2E1/mg microsomal protein. At maximal levels of expression the enzyme catalyzed the formation of 158 pmol 6-hydroxychlorzoxazone/min/mg total cellular protein. In addition, the level of the enzyme could be modulated by the concentration of Tc in the media. In the absence of Tc, exposure of cells to N-nitrosodimethylamine caused a significant dose-dependent decrease in cell viability. In contrast, menadione, a redox cycling toxicant, was less toxic to the cells after induction of CYP2E1 when compared with noninduced cells. Pulse-chase studies conducted 72 h after removal of Tc indicated a rapid turnover of CYP2E1 with a half-life of 3.9 h. Addition of the ligand, 4-methylpyrazole, and the suicide substrate, 1-aminobenzotrizole, decreased the degradation of CYP2E1. This cell line offers a useful system to examine the role of CYP2E1 in the cytotoxicity of xenobiotics and to investigate post-translational regulation of the enzyme.  (+info)

Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. (29/16336)

PURPOSE: The loss of corneal endothelial cells associated with aging and possibly other causes has been speculated to be related to exposure to reactive oxygen species (ROS). The current study was conducted to investigate, by use of photosensitizers, the underlying mechanisms involved in the death of bovine corneal endothelial cells (BCENs) caused by ROS. METHODS: BCEN cells in primary culture were treated with a photosensitizer (riboflavin or rose bengal) with light exposure. The patterns of cell damage and death were assessed using an acridine orange-ethidium bromide differential staining method, TdT-mediated dUTP nick-end labeling (TUNEL) assay, and transmission electron microscopy. The cytotoxicity was assayed by mitochondrial function using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) testing. Antioxidants, including catalase, L-histidine, salicylic acid, and superoxide dismutase, were used to determine the types of ROS involved. Activation of nuclear factor (NF)-kappaB was examined by fluorescent immunocytochemistry with anti-p65 antibody. RESULTS: Light-irradiated riboflavin or rose bengal resulted in a significant decrease in viability of BCEN cells. Chromosomal condensation and fragmentation were observed in apoptotic cells, and membrane lysis and damage of cell ultrastructures were observed in necrotic cells. Riboflavin induced apoptosis at 30 minutes and thereafter and induced necrosis after 2 hours. Rose bengal was shown to cause similar effects within half the time required for the effects of riboflavin. Catalase and salicylic acid were found to provide protection for BCENs from cytotoxic effects of riboflavin, and L-histidine was found to protect BCENs from cytotoxicity induced by rose bengal. Kinetic studies using immunocytochemistry showed that NF-kappaB was translocated into the nucleus within 15 minutes and 30 minutes after treatment with rose bengal and riboflavin, respectively. CONCLUSIONS: The cytotoxic effects of photo-irradiated riboflavin and rose bengal are shown to be mediated by two distinct but parallel pathways, one leading to apoptosis and the other to necrosis. Possible involvement of NF-kappaB in cell death is suggested. These findings provide potential leads for future investigation into the molecular mechanisms of loss of corneal endothelial cells related to aging, oxidative stress, and possibly other similar causes.  (+info)

Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs. (30/16336)

Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes + citric acid; hexa(sulphobutyl)fullerenes + phosphoramidon + citric acid; dimethylthiourea (DMTU) + citric acid; and DMTU + phosphoramidon + citric acid. Hexa(sulphobutyl)fullerenes and DMTU are scavengers of oxygen radicals while phosphoramidon is an inhibitor of the major degradation enzyme for tachykinins. Animals were anaesthetized, paralyzed, and artificially ventilated. Each animal was given 50 breaths of 4 ml saline or citric acid aerosol. We measured dynamic respiratory compliance (Crs), forced expiratory volume in 0.1 (FEV0.1), and maximal expiratory flow at 30% total lung capacity (Vmax30) to evaluate the degree of airway constriction. Citric acid, but not saline, aerosol inhalation caused marked decreases in Crs, FEV0.1 and Vmax30, indicating marked airway constriction. This constriction was significantly attenuated by either hexa(sulphobutyl)fullerenes or by DMTU. In addition, phosphoramidon significantly reversed the attenuating action of hexa(sulphobutyl)fullerenes, but not that of DMTU. Citric acid aerosol inhalation caused increases in both lucigenin- and t-butyl hydroperoxide-initiated chemiluminescence counts, indicating citric acid-induced increase in oxygen radicals and decrease in antioxidants in bronchoalveolar lavage fluid. These alterations were significantly suppressed by either hexa(sulphobutyl)fullerenes or DMTU. An elastase inhibitor eglin-c also significantly attenuated citric acid-induced airway constriction, indicating the contributing role of elastase in this type of constriction. We conclude that both oxygen radicals and elastase play an important role in tachykinin-mediated, citric acid-induced airway constriction.  (+info)

Reactive oxygen species participate in mdr1b mRNA and P-glycoprotein overexpression in primary rat hepatocyte cultures. (31/16336)

P-glycoproteins encoded by multidrug resistance type 1 (mdr1) genes mediate ATP-dependent efflux of numerous lipophilic xenobiotics, including several anticancer drugs, from cells. Overexpression of mdr1-type transporters in tumour cells contributes to a multidrug resistance phenotype. Several factors shown to induce mdr1 overexpression (UV irradiation, epidermal growth factor, tumour necrosis factor alpha, doxorubicin) have been associated with the generation of reactive oxygen species (ROS). In the present study, primary rat hepatocyte cultures that exhibit time-dependent overexpression of the mdr1b gene were used as a model system to investigate whether ROS might participate in the regulation of intrinsic mdr1b overexpression. Addition of H2O2 to the culture medium resulted in a significant increase in mdrlb mRNA and P-glycoprotein after 3 days of culture, with maximal (approximately 2-fold) induction being observed with 0.5-1 mM H2O2. Furthermore, H2O2 led to activation of poly(ADP-ribose) polymerase, a nuclear enzyme activated by DNA strand breaks, indicating that ROS reached the nuclear compartment. Thus, extracellularly applied H2O2 elicited intracellular effects. Treatment of rat hepatocytes with the catalase inhibitor 3-amino-1,2,4-triazole (2-4 mM for 72 h or 10 mM for 1 h following the hepatocyte attachment period) also led to an up-regulation of mdrlb mRNA and P-glycoprotein expression. Conversely, antioxidants (1 mM ascorbate, 10 mM mannitol, 2% dimethyl sulphoxide, 10 mM N-acetylcysteine) markedly suppressed intrinsic mdr1b mRNA and P-glycoprotein overexpression. Intracellular steady-state levels of the mdrl substrate rhodamine 123, determined as parameter of mdr1-type transport activity, indicated that mdr1-dependent efflux was increased in hepatocytes pretreated with H2O2 or aminotriazole and decreased in antioxidant-treated cells. The induction of mdr1b mRNA and of functionally active mdr1-type P-glycoproteins by elevation in intracellular ROS levels and the repression of intrinsic mdrlb mRNA and P-glycoprotein overexpression by antioxidant compounds support the conclusion that the expression of the mdr1b P-glycoprotein is regulated in a redox-sensitive manner.  (+info)

Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. (32/16336)

To determine the role of surfactant protein-A(SP-A) in antiviral host defense, mice lacking SP-A (SP-A-/-) were produced by targeted gene inactivation. SP-A-/- and control mice (SP-A+/+) were infected with respiratory syncytial virus (RSV) by intratracheal instillation. Pulmonary infiltration after infection was more severe in SP-A-/- than in SP-A+/+ mice and was associated with increased RSV plaque-forming units in lung homogenates. Pulmonary infiltration with polymorphonuclear leukocytes was greater in the SP-A-/- mice. Levels of proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6 were enhanced in lungs of SP-A-/- mice. After RSV infection, superoxide and hydrogen peroxide generation was deficient in macrophages from SP-A-/- mice, demonstrating a critical role of SP-A in oxidant production associated with RSV infection. Coadministration of RSV with exogenous SP-A reduced viral titers and inflammatory cells in the lung of SP-A-/- mice. These findings demonstrate that SP-A plays an important host defense role against RSV in vivo.  (+info)