Lysosomal alterations induced in cultured rat fibroblasts by long-term exposure to low concentrations of azithromycin. (73/41636)

Computer-aided simulations suggest that the doses and schedules of administration of azithromycin proposed in treatment and prophylaxis of Mycobacterium avium complex (MAC) in AIDS patients will result in drug concentrations in serum and extracellular fluids remaining for sustained periods of time in the 0.03-0.1 mg/L range. We exposed cultured rat embryo fibroblasts to these concentrations (and multiples up to 20 mg/L) for up to 16 days. Electron microscopy showed that after 7 days' incubation in 0.03 mg/L azithromycin, there was conspicuous accumulation of osmiophilic, lamellar structures (myeloid bodies) in lysosomes, suggesting the onset of a phospholipidosis. Assay of total cell phospholipids and cholesterol showed significant increases in cells exposed to > or = 1 to 5 mg/L of azithromycin in association with hyperactivity of the lysosomal enzyme cathepsin B. The data suggest that azithromycin, at extracellular concentrations pertinent to its use for MAC treatment, and perhaps also prophylaxis, causes limited morphological alterations of the lysosomes in cultured cells which are of the same nature as those developing rapidly and extensively at higher concentrations.  (+info)

Determination of free interstitial concentrations of piperacillin-tazobactam combinations by microdialysis. (74/41636)

The investigation of tissue penetration and distribution of antibiotics is of great importance, since infections occur mostly in the tissues. The aim of this study was to investigate the pharmacokinetics of piperacillin and tazobactam, alone and in combination, by measuring total plasma and free interstitial concentrations, and to examine the relationship between free levels of both drugs in blood and those in the extracellular space. Piperacillin and tazobactam were administered, alone and in combination, to anaesthetized rats as a single iv bolus dose. Total plasma concentrations and free extracellular concentrations were quantified by HPLC. In-vivo microdialysis sampling was used to study the free tissue distribution patterns of both drugs. The pharmacokinetics of piperacillin and tazobactam in plasma were consistent with a two-compartment body model. Piperacillin pharmacokinetics were not influenced by co-administration of tazobactam. Tazobactam's volumes of distribution and clearance were decreased by the co-administration of piperacillin and the area under the curve was significantly increased. Comparisons between calculated free concentrations in the peripheral compartment for both drugs and measured free extracellular concentrations revealed excellent agreement. For piperacillin and tazobactam, alone and in combination, predictions of the concentration-time profiles of free drug in the peripheral compartment can be made on the basis of plasma data.  (+info)

The Ca2+ channel blockade changes the behavioral and biochemical effects of immobilization stress. (75/41636)

We investigated how the effects of chronic immobilization stress in rats are modified by Ca2+ channel blockade preceding restraint sessions. The application of nifedipine (5 mg/kg) shortly before each of seven daily 2 h restraint sessions prevented the development of sensitized response to amphetamine as well as the stress-induced elevation of the densities of L-type Ca2+ channel in the hippocampus and significantly reduced the elevation of the densities of [3H]nitrendipine binding sites in the cortex and D1 dopamine receptors in the limbic forebrain. Neither stress, nor nifedipine affected the density of alpha 1-adrenoceptors and D1 receptors in the cerebral cortex nor D2 dopamine receptors in the striatum. A single restraint session caused an elevation of blood corticosterone level that remained unaffected by nifedipine pretreatment, but the reduction of this response during the eighth session was significantly less expressed in nifedipine-treated rats. We conclude that L-type calcium channel blockade prevents development of several stress-induced adaptive responses.  (+info)

Carbamazepine-induced upregulation of adenosine A1-receptors in astrocyte cultures affects coupling to the phosphoinositol signaling pathway. (76/41636)

The anticonvulsant and antibipolar drug carbamazepine (CBZ) is known to act as a specific antagonist at adenosine A1-receptors. After a 3-week application of CBZ, A1-receptors are upregulated in the rat brain. We have investigated the consequences of this upregulation for the A1-receptor-mediated signal transduction in primary astrocyte cultures from different regions of the rat brain. CBZ treatment for 10 days had no effect on adenosine A1-receptor mRNA expression in cultures with high basal A1-receptor mRNA levels, but increased A1-receptor mRNA in cultures exhibiting low basal A1-receptor mRNA levels. This upregulation of A1-receptor mRNA was accompanied by an upregulation or induction of A1-receptor-mediated potentiation of PLC activity, a property that was not found in these cultures before CBZ treatment. Thus, CBZ treatment for 10 days induces a new quality of adenosine A1-receptor-mediated signal transduction in cells that express low basal A1-receptor numbers.  (+info)

Metabolism of retinaldehyde isomers in pregnant rats: 13-cis- and all-trans-retinaldehyde, but not 9-cis-retinaldehyde, yield very similar patterns of retinoid metabolites. (77/41636)

Retinaldehyde (RAL), a key intermediate in retinoid metabolism, acts as a retinoic acid (RA) precursor, but is also reduced to retinol (ROH), which can subsequently be esterified to retinyl esters, the storage form of vitamin A. Limited information is available on the metabolism of geometric isomers of RAL as well as on the transplacental distribution of their metabolites, including RA isomers. Such information would be very helpful for the assessment of the teratogenic potency of RAL isomers, as teratogenesis represents a major side effect of retinoid use in pharmacotherapy. In the present study we examined concentrations of retinoids in plasma, maternal tissues, and embryos of pregnant rats 2 h after a single oral dose (100 mg/kg body weight) of all-trans-, 13-cis-, or 9-cis-RAL on gestational day 13. The main findings of this study were the very similar patterns of retinoid metabolites (consisting of retinoids with mainly the all-trans-configuration) after administration of all-trans- and 13-cis-RAL, and the high concentrations of 9-cis-RA, 9,13-dicis-RA, and 9-cis-retinoyl-beta-D-glucuronide after dosing with 9-cis-RAL. In addition, all-trans-RA as a RAL metabolite reached the embryos to a much greater extent than any of its cis-isomers. The results are discussed in view of in vitro data on enzymes involved in the biotransformation of RAL isomers.  (+info)

Oxidized derivatives of 7-dehydrocholesterol induce growth retardation in cultured rat embryos: a model for antenatal growth retardation in the Smith-Lemli-Opitz syndrome. (78/41636)

7-Dehydrocholesterol accumulates in fetuses affected by the Smith-Lemli-Opitz syndrome as a result of a deficit in the ultimate step of cholesterol synthesis catalyzed by Delta7 reductase. Rat embryos explanted at gestation day 10 and cultured for 48 h in the presence of the Delta7 reductase inhibitor AY 9944 were used as a model to discriminate between the beneficial effect of supplementation with cholesterol and the deleterious effect of supplementation with 7-dehydrocholesterol. Cholesterol supplementation in the form of mixed cholesterol/lecithin liposomes added to serum serving as the culture medium restores the growth of embryos which is markedly decreased in the presence of the inhibitor. 7-Dehydrocholesterol under identical conditions does not restore growth and impairs the beneficial effect of cholesterol added simultaneously. UV-photooxidation of 7-dehydrocholesterol-supplemented culture medium enhances its embryotoxicity, which suggests uptake by the embryo of toxic by-products formed from 7-dehydrocholesterol. By contrast photooxidation of cholesterol-supplemented culture medium does not induce embryotoxicity. alpha-Tocopherol reduces the toxicity of photooxidized 7-dehydrocholesterol supplementing the culture medium. We conclude that 7-dehydrocholesterol does not fulfill the cholesterol requirement of the developing embryos and exerts an additional embryotoxic effect probably via oxidized by-products. This could explain the antenatal growth retardation of SLOS by a blockage of the maternal compensatory cholesterol influx.  (+info)

Comparison of the stability and substrate specificity of purified peroxisomal 3-oxoacyl-CoA thiolases A and B from rat liver. (79/41636)

The specific activities and substrate specificities of 3-oxoacyl-CoA thiolase A (thiolase A) purified from normal rat liver peroxisomes and 3-oxoacyl-CoA thiolase B (thiolase B) isolated from livers of rats treated with the peroxisome proliferator clofibrate were virtually identical. The enzymes could be distinguished by their N-terminal amino acid sequences, their isoelectric points and their stability, the latter being higher for thiolase A. Contrary to thiolase B, which showed a marked cold lability in the presence of KCl by dissociating into monomers with poor activity, thiolase A retained its full activity and its homodimeric structure under these conditions.  (+info)

Caloric restriction leads to regional specialisation of adipocyte function in the rat. (80/41636)

The study analysed the responses of three metabolic parameters in five distinct adipose tissue depots to caloric restriction (4 weeks) in the rat. The aims were to evaluate whether specific adipose tissue depots were recruited for triacylglycerol (TAG) storage and/or mobilisation, and to determine to what extent specific adipose tissue depots exhibited preferences for the source of fatty acid (FA) for TAG storage. Caloric restriction led to a general enhancement of the response of lipoprotein lipase (LPL), FA synthesis and glucose utilisation to a meal. Effects were particularly marked in the parametrial, perirenal and interscapular depots compared with mesenteric and subcutaneous depots. There was no evidence that individual depots selectively expressed a preference for the pathways concerned with the generation of FA for storage (the exogenous (LPL) and the endogenous (synthesis) pathway). However, the temporal sequence of activation of these pathways differed in a manner consistent with a switch from preponderant use of FA produced via de novo synthesis during the very early phase of feeding towards later use of FA derived from circulating TAG. The overall excursions in insulin levels observed in the calorie-restricted rats were comparable to those found in free-feeding rats, but the magnitude and the rapidity of the individual metabolic responses of the adipocyte were augmented. The data are consistent with a general enhancement of insulin sensitivity and responsiveness in adipose tissue of calorie-restricted rats, together with adaptive regional specialisation of adipocyte function. These adaptations would be predicted to facilitate the immediate conservation of dietary nutrients by promoting their storage as the FA or glycerol moieties of adipose tissue TAG and thereby to ensure the regulated release of FA and glycerol from adipose tissue in accordance with the requirement for glucose conservation and/or production.  (+info)