(1/7889) Long-term transplantability and morphological stability of three experimentally induced urinary bladder carcinomas in rats.

Three transitional cell carcinomas induced in Fischer 344 rats by a methylcholanthrene pellet or a foreign body inserted locally into the bladder have been serially transplanted in the syngeneic strain for up to 6.5 years. There have been no changes in the individual morphological characteristics of the tumors during this time. Cells cultured in vitro for varying numbers of passages reproduce regularly the morphology of each tumor when they are injected back into the animals and results from a microcytotoxicity assay for cellular immunity indicate that they retain a common, bladder tumor-specific antigen. These tumors are useful for research in turmo biology and are offered to other scientists seeking transplantable carcinomas for experimentation.  (+info)

(2/7889) Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death.

Using in situ patch-clamp techniques in rat telencephalic slices, we have followed resting potential (RP) properties and the functional expression of NMDA receptors in neocortical Cajal-Retzius (CR) cells from embryonic day 18 to postnatal day 13, the time around which these cells normally disappear. We find that throughout their lives CR cells have a relatively depolarized RP (approximately -50 mV), which can be made more hyperpolarized (approximately -70 mV) by stimulation of the Na/K pump with intracellular ATP. The NMDA receptors of CR cells are subjected to intense postnatal upregulation, but their similar properties (EC50, Hill number, sensitivity to antagonists, conductance, and kinetics) throughout development suggest that their subunit composition remains relatively homogeneous. The low RP of CR cells is within a range that allows for the relief of NMDA channels from Mg2+ blockade. Our findings are consistent with the hypothesis that CR cells may degenerate and die subsequent to uncontrolled overload of intracellular Ca2+ via NMDA receptor activation by ambient glutamate. In support of this hypothesis we have obtained evidence showing the protection of CR cells via in vivo blockade of NMDA receptors with dizocilpine.  (+info)

(3/7889) Virulence of a spaP mutant of Streptococcus mutans in a gnotobiotic rat model.

Streptococcus mutans, the principal etiologic agent of dental caries in humans, possesses a variety of virulence traits that enable it to establish itself in the oral cavity and initiate disease. A 185-kDa cell surface-localized protein known variously as antigen I/II, antigen B, PAc, and P1 has been postulated to be a virulence factor in S. mutans. We showed previously that P1 expression is necessary for in vitro adherence of S. mutans to salivary agglutinin-coated hydroxyapatite as well as for fluid-phase aggregation. Since adherence of the organism is a necessary first step toward colonization of the tooth surface, we sought to determine what effect deletion of the gene for P1, spaP, has on the colonization and subsequent cariogenicity of this organism in vivo. Germ-free Fischer rats fed a diet containing 5% sucrose were infected with either S. mutans NG8 or an NG8-derived spaP mutant strain, PC3370, which had been constructed by allelic exchange mutagenesis. At 1-week intervals for 6 weeks after infection, total organisms recovered from mandibles were enumerated. At week 6, caries lesions also were scored. A significantly lower number of enamel and dentinal carious lesions was observed for the mutant-infected rats, although there was no difference between parent and mutant in the number of organisms recovered from teeth through 6 weeks postinfection. Coinfection of animals with both parent and mutant strains resulted in an increasing predominance of the mutant strain being recovered over time, suggesting that P1 is not a necessary prerequisite for colonization. These data do, however, suggest a role for P1 in the virulence of S. mutans, as reflected by a decrease in the cariogenicity of bacteria lacking this surface protein.  (+info)

(4/7889) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors.

We have developed a new tumor-avid amino acid, 1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), labeled with 18F for nuclear medicine imaging. METHODS: [18F]FACBC was prepared with high specific activity (no carrier added [NCA]) and was evaluated for its potential in tumor localization. A comparative study was performed for [18F]FACBC and [18F]2-fluorodeoxyglucose (FDG) in which the uptake of each agent in 9L gliosarcoma (implanted intracerebrally in Fisher 344 rats) was measured. In addition, the first human PET study of [18F]FACBC was performed on a patient with residual glioblastoma multiforme. Quantitative brain images of the patient were obtained by using a Siemens 921 47-slice PET imaging system. RESULTS: In the rat brain, the initial level of radioactivity accumulation after injection of [18F]FACBC was low (0.11 percentage injected dose per gram [%ID/g]) at 5 min and increased slightly to 0.26 %ID/g at 60 min. The tumor uptake exhibited a maximum at 60 min (1.72 %ID/g), resulting in a tumor-to-brain ratio increase of 5.58 at 5 min to 6.61 at 60 min. In the patient, the uptake of [18F]FACBC in the tumor exhibited a maximum concentration of 146 nCi/mL at 35 min after injection. The uptake of radioactivity in the normal brain tissue was low, 21 nCi/mL at 15 min after injection, and gradually increased to 29 nCi/mL at 60 min after injection. The ratio of tumor to normal tissue was 6 at 20 min after injection. The [18F]FACBC PET scan showed intense uptake in the left frontal region of the brain. CONCLUSION: The amino acid FACBC can be radiofluorinated for clinical use. [18F]FACBC is a potential PET tracer for tumor imaging.  (+info)

(5/7889) An intramembrane modulator of the ErbB2 receptor tyrosine kinase that potentiates neuregulin signaling.

The ErbB2 receptor tyrosine kinase plays a critical role in a variety of developmental processes, and its aberrant activation may contribute to the progression of some breast and ovarian tumors. ASGP2, a transmembrane glycoprotein found on the surface of the highly metastatic ascites 13762 rat mammary adenocarcinoma cell line, is constitutively associated with ErbB2 in these cells and in mammary tissue from pregnant rats. Expression studies indicate that ASGP2 interacts directly and specifically with ErbB2 through one of its epidermal growth factor-like domains and that the co-expression of the two proteins in the same cell dramatically facilitates their direct stable interaction. Ectopic expression of ASGP2 in human melanoma tumor cells potentiates the response of endogenous ErbB2 to the neuregulin-1 growth factor. These observations point to a novel intramembrane mechanism for the modulation of receptor tyrosine kinase activity.  (+info)

(6/7889) In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity.

The widely used anticancer prodrug cyclophosphamide (CPA) is activated in liver by a 4-hydroxylation reaction primarily catalyzed by cytochrome P-4502B and P-4502C enzymes. An alternative metabolic pathway involves CPA N-dechloroethylation to yield chloroacetaldehyde (CA), a P-4503A-catalyzed deactivation/neurotoxication reaction. The in vivo modulation of these alternative, competing pathways of P-450 metabolism was investigated in pharmacokinetic studies carried out in the rat model. Peak plasma concentrations (Cmax) for 4-OH-CPA and CA were increased by 3- to 4-fold, and apparent plasma half-lives of both metabolites were correspondingly shortened in rats pretreated with phenobarbital (PB), an inducer of P-4502B and P-4503A enzymes. However, PB had no net impact on the extent of drug activation or its partitioning between these alternative metabolic pathways, as judged from AUC values (area-under-the-plasma concentration x time curve) for 4-OH-CPA and CA. The P-4503A inhibitor troleandomycin (TAO) decreased plasma Cmax and AUC of CA (80-85% decrease) without changing the Cmax or AUC of 4-OH-CPA in uninduced rats. In PB-induced rats, TAO decreased AUCCA by 73%, whereas it increased AUC4-OH-CPA by 93%. TAO thus selectively suppresses CPA N-dechloroethylation, thereby increasing the availability of drug for P-450 activation via 4-hydroxylation. By contrast, dexamethasone, a P-4503A inducer and antiemetic widely used in patients with cancer, stimulated large, undesirable increases in the Cmax and AUC of CA (8- and 4-fold, respectively) while reducing the AUC of the 4-hydroxylation pathway by approximately 60%. Tumor excision/in vitro colony formation and tumor growth delay assays using an in vivo 9L gliosarcoma solid tumor model revealed that TAO suppression of CPA N-dechloroethylation could be achieved without compromising the antitumor effect of CPA. The combination of PB with TAO did not, however, enhance the antitumor activity of CPA, despite the approximately 2-fold increase in AUC4-OH-CPA, suggesting that other PB-inducible activities, such as aldehyde dehydrogenase, may counter this increase through enhanced deactivation of the 4-hydroxy metabolite. Together, these studies demonstrate that the P-4503A inhibitor TAO can be used to effectively modulate CPA metabolism and pharmacokinetics in vivo in a manner that decreases the formation of toxic metabolites that do not contribute to antitumor activity.  (+info)

(7/7889) Age-related reductions in [3H]WIN 35,428 binding to the dopamine transporter in nigrostriatal and mesolimbic brain regions of the fischer 344 rat.

In the present study, we used the potent cocaine analog [3H]WIN 35, 428 to map and quantify binding to the dopamine transporter (DAT) within the dorsal striatum, nucleus accumbens, substantia nigra, and ventral tegmental area in young (6-month-old), middle-aged (12-month-old), and aged (18- and 24-month-old) Fischer 344 rats. Quantitative autoradiographic analysis of indirect [3H]WIN 35,428 saturation curves revealed two-site binding for all four brain regions in every age group. The percentage of binding to the high- or low-affinity sites did not differ with age or region and was approximately 50%. However, significant age-related decreases in the overall density (Bmax) of [3H]WIN 35,428-binding sites were observed in the striatum, nucleus accumbens, substantia nigra, and ventral tegmental area. The Bmax within all brain regions declined by more than 15% every 6 months, with the Bmax in the aged (24-month-old) group being approximately half that measured in the young adult (6-month-old) group. Competition experiments indicated that nomifensine also exhibited two-site binding to the DAT in Fischer 344 rats. No consistent age-related differences in binding affinities were noted with either [3H]WIN 35,428 or nomifensine. Taken together, these results support the hypothesis that functional DATs within the nigrostriatal and mesolimbic systems are down-regulated with age, without changing their affinity for ligands.  (+info)

(8/7889) Isolation and characterization of a rat homologue of the human tuberous sclerosis 1 gene (Tsc1) and analysis of its mutations in rat renal carcinomas.

In the Eker rat, a germ-line mutation in the homologue of the human tuberous sclerosis gene (Tsc2) causes renal cell carcinomas (RCs) with a complete penetrance in all heterozygotes. Tsc2 mutations have also been found in a subset of chemically induced non-Eker rat RCs. Because tuberous sclerosis patients with alteration of either of the two predisposing genes (TSC1 and TSC2) show identical symptoms, the products of these two genes are thought to be involved in a common biological pathway. In this study, to analyze the possible overlap between the functions of Tsc2 and Tscl gene products, we isolated and characterized a rat homologue of the TSC1 gene (Tsc1). The rat Tsc1 gene, which has an identical exon-intron structure to that of human TSC1 and is localized on rat chromosome 3, has been shown to encode a protein (hamartin) that is highly homologous to the human counterpart with an approximately 86% amino acid sequence identity. Using PCR-single-strand conformational polymorphism analysis, we identified two splicing donor site mutations in one chemically induced rat RC (1 of 15). This suggests that alterations of the Tsc1 gene may be involved in the development of a subset of rat RCs.  (+info)