Effects of combined administration of quercetin, rutin, and extract of white radish sprout rich in kaempferol glycosides on the metabolism in rats. (33/128)

Quercetin, rutin, the extract of white radish sprout rich in kaempferol glycosides, and their combination were intragastrically administered to Wistar rats to investigate the interactive metabolism of these flavonoids. The combined administration of these flavonoids changed the concentrations of the metabolites in plasma as compared with the concentrations after the administration of a single compound.  (+info)

Purification and properties of soluble and bound gamma-glutamyltransferases from radish cotyledon. (34/128)

Soluble and cell wall bound gamma-glutamyltransferases (GGTs) were purified from radish (Raphanus sativus L.) cotyledons. Soluble GGTs (GGT I and II) had the same M(r) of 63,000, and were composed of a heavy subunit (M(r), 42,000) and a light one (M(r), 21,000). The properties of GGT I and II were similar. Bound GGTs (GGT A and B) were purified to homogeneity from the pellet after the extraction of soluble GGTs. GGT A and B were monomeric proteins with an M(r) of 61,000. The properties of GGT A and B were similar. Thus, bound GGTs were distinguished from soluble GGTs. The optimal pHs of soluble and bound GGTs were about 7.5. Both soluble and bound GGTs utilized glutathione, gamma-L-glutamyl-p-nitroanilide, oxidized glutathione and the conjugate of glutathione with monobromobimane as substrates, and were inhibited by acivicin, but soluble GGTs were also distinguished from bound GGTs with regard to these properties.  (+info)

Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection. (35/128)

Ionotropic glutamate receptors (iGluRs) are ligand-gated nonselective cation channels that mediate fast excitatory neurotransmission. Although homologues of the iGluRs have been identified in higher plants, their roles are largely unknown. In this work we isolated a full-length cDNA clone (RsGluR) encoding a putative glutamate receptor from small radish. An RsGluR: mGFP fusion protein was localized to the plasma membrane. In Arabidopsis thaliana overexpressing the full-length cDNA, glutamate treatment triggered greater Ca2+ influx in the root cells of transgenic seedlings than in those of the wild type. Transgenic plants exhibited multiple morphological changes such as necrosis at their tips and the margins of developing leaves, dwarf stature with multiple secondary inflorescences, and retarded growth, as previously observed in transgenic Arabidopsis overexpressing AtGluR3.2 [Kim et al. (2001)]. Microarray analysis showed that jasmonic acid (JA)-responsive genes including defensins and JA-biosynthetic genes were up-regulated. RsGluR overexpression also inhibited growth of a necrotic fungal pathogen Botrytis cinerea possibly due to up-regulation of the defensins. Based on these results, we suggest that RsGluR is a glutamate-gated Ca2+ channel located in the plasma membrane of higher plants and plays a direct or indirect role in defense against pathogen infection by triggering JA biosynthesis.  (+info)

An alpha-L-arabinofuranosidase/beta-D-xylosidase from immature seeds of radish (Raphanus sativus L.). (36/128)

The carbohydrate moieties of arabinogalactan proteins (AGPs) are essential for their physiological functions and undergo rapid turnover in vivo. Degradation of the carbohydrate moieties of AGPs seems to occur by concerted action of several glycosidases, among them alpha-L-arabinofuranosidase, beta-D-galactosidase, and beta-D-glucuronidase. Here, a bifunctional alpha-L-arabinofuranosidase/beta-D-xylosidase from immature seeds of radish (Raphanus sativus L.), which hydrolyses alpha-L-arabinofuranosyl residues of the carbohydrate moieties of AGPs, has been cloned by reverse transcriptase-PCR. The gene, designated RsAraf1, contained an open reading frame of 2343 bp (780 amino acids), including a putative signal sequence (33 amino acids) at the N-terminus. RsAraf1 is highly similar to barley alpha-L-arabinofuranosidase/beta-D-xylosidases and belongs to family 3 of the glycosyl hydrolases based on sequence homology. Southern blot analysis revealed that several related genes exist in the radish genome. RsAraf1 is expressed throughout seed development and weakly expressed in young seedlings. It was found that alpha-L-arabinofuranosidase activity in a cell-wall protein fraction prepared from transgenic Arabidopsis plants with enhanced expression of RsAraf1 was significantly higher than that in a wild-type protein fraction; the crude enzyme preparation released L-arabinose from radish AGPs as well as alpha-(1-->5)-arabinan and arabinoxylan. Accordingly, the amount of L-arabinosyl residues in the cell walls of transgenic plants was significantly decreased. These results indicate that RsAraf1 encodes a bifunctional alpha-L-arabinofuranosidase/beta-D-xylosidase and suggest that RsAraf1 is involved in the hydrolysis of the carbohydrate moieties of AGPs in immature radish seeds.  (+info)

Subcellular localization and possible functions of gamma-glutamyltransferase in the radish (Raphanus sativus L.) plant. (37/128)

Previously we reported the purification of soluble gamma-glutamyltransferases (GGTs) from radish cotyledon. Subcellular fractionation of radish cells revealed that soluble GGT is a vacuolar enzyme. Acivicin, a GGT inhibitor, mediated the in vivo catabolism inhibition of the glutathione S-conjugate generated from endogenous glutathione and exogenously supplied monochlorobimane. Thus soluble GGT is possibly involved in the catabolism of glutathione S-conjugates.  (+info)

Hybridization between oilseed rape (Brassica napus) and different populations and species of Raphanus. (38/128)

When cultivating genetically modified varieties, the spontaneous gene flow between crop and wild relatives could be of concern. We analyzed spontaneous hybridization between a transgenic male-sterile line of oilseed rape (Brassica napus, 2n = 38, AACC) and, as pollen donors, three European populations of wild radish (Raphanus raphanistrum, 2n = 18, Rr,Rr) and a variety of cultivated radish (Raphanus sativus, 2n = 18, RR). Seeds showed size and shape dimorphism that correlated to the frequency of hybrids. The offspring were scored morphologically and analyzed using DNA markers (inter-simple sequence repeats) to quantify hybrid frequencies. Seed set ranged from 0.4-1.2 seeds per pod, and 0.02-0.6 seeds per pod were confirmed as hybrids. The frequency of confirmed hybrids differed significantly among populations of R. raphanistrum. In the cross with a French population, all offspring were hybrids; in the cross with a Swiss population, 53% of the offspring were hybrids; and in the cross with a Danish population, only 2% of the offspring were found to be hybrids. The remaining offspring apparently belonged to two groups: the majority was B. napus-like plants, possibly of matromorphic origin, and a minority from the Danish cross seemed to carry fragments of the Raphanus genome. In the cross with a cultivated R. sativus, all offspring were found to be hybrids. This is the first report on spontaneous hybridization between B. napus and R. sativus. Hybrids from all cross-combinations had low pollen fertility (0-15%). If R. raphanistrum occurs where male-sterile B. napus is cultivated, large regional differences in hybridization frequencies between the species could complicate environmental risk assessment of transgenic oilseed rape.  (+info)

Streptomyces turgidiscabies and Streptomyces reticuliscabiei: one genomic species, two pathogenic groups. (39/128)

Three strains of Streptomyces reticuliscabiei and two strains of Streptomyces turgidiscabies were analysed, together with reference and type strains of other Streptomyces species, for phenotypic traits, DNA-DNA relatedness, comparison of 16S rRNA gene sequences and presence of necrotic protein gene (nec1) homologues in order to clarify their phylogenetic relationships. A numerical analysis of phenotypic characteristics showed that S. reticuliscabiei and S. turgidiscabies belong to the same cluster and share almost all morphological and biochemical traits that are important in the identification of Streptomyces species. DNA-DNA hybridization and phylogenetic comparisons of 16S rRNA gene sequences confirmed that the two species are genomically closely related. In contrast, pathological data showed that S. turgidiscabies and S. reticuliscabiei cause two distinct diseases. Gene homologues of nec1 were detected in S. turgidiscabies and other common scab species (Streptomyces scabiei, Streptomyces europaeiscabiei and Streptomyces stelliscabiei), but not in S. reticuliscabiei. To avoid confusion between agents causing separate diseases, it is proposed that the existing distinct species names are retained: S. turgidiscabies involved in common scab and S. reticuliscabiei involved in netted scab.  (+info)

Population size and relatedness affect fitness of a self-incompatible invasive plant. (40/128)

One of the lingering paradoxes in invasion biology is how founder populations of an introduced species are able to overcome the limitations of small size and, in a "reversal of fortune," proliferate in a new habitat. The transition from colonist to invader is especially enigmatic for self-incompatible species, which must find a mate to reproduce. In small populations, the inability to find a mate can result in the Allee effect, a positive relationship between individual fitness and population size or density. Theoretically, the Allee effect should be common in founder populations of self-incompatible colonizing species and may account for the high rate of failed introductions, but little supporting evidence exists. We created a field experiment to test whether the Allee effect affects the maternal fitness of a self-incompatible invasive species, wild radish (Raphanus sativus). We created populations of varying size and relatedness. We measured maternal fitness in terms of both fruit set per flower and seed number per fruit. We found that both population size and the level of genetic relatedness among individuals influence maternal reproductive success. Our results explicitly define an ecological genetic obstacle faced by populations of an exotic species on its way to becoming invasive. Such a mechanistic understanding of the invasions of species that require a mate can and should be exploited for both controlling current outbreaks and reducing their frequency in the future.  (+info)