Bayesian analysis of botanical epidemics using stochastic compartmental models. (17/128)

A stochastic model for an epidemic, incorporating susceptible, latent, and infectious states, is developed. The model represents primary and secondary infection rates and a time-varying host susceptibility with applications to a wide range of epidemiological systems. A Markov chain Monte Carlo algorithm is presented that allows the model to be fitted to experimental observations within a Bayesian framework. The approach allows the uncertainty in unobserved aspects of the process to be represented in the parameter posterior densities. The methods are applied to experimental observations of damping-off of radish (Raphanus sativus) caused by the fungal pathogen Rhizoctonia solani, in the presence and absence of the antagonistic fungus Trichoderma viride, a biological control agent that has previously been shown to affect the rate of primary infection by using a maximum-likelihood estimate for a simpler model with no allowance for a latent period. Using the Bayesian analysis, we are able to estimate the latent period from population data, even when there is uncertainty in discriminating infectious from latently infected individuals in data collection. We also show that the inference that T. viride can control primary, but not secondary, infection is robust to inclusion of the latent period in the model, although the absolute values of the parameters change. Some refinements and potential difficulties with the Bayesian approach in this context, when prior information on parameters is lacking, are discussed along with broader applications of the methods to a wide range of epidemiological systems.  (+info)

Raphanus sativus (Radish): their chemistry and biology. (18/128)

Leaves and roots of Raphanus sativus have been used in various parts of the world to treat cancer and as antimicrobial and antiviral agents. The phytochemistry and pharmacology of this radish is reviewed. The structures of the compounds isolated and identified are listed and aspects of their chemistry and pharmacology are discussed. The compounds are grouped according to structural classes.  (+info)

Escherichia coli contamination of vegetables grown in soils fertilized with noncomposted bovine manure: garden-scale studies. (19/128)

In this study we tested the validity of the National Organic Program (NOP) requirement for a > or =120-day interval between application of noncomposted manure and harvesting of vegetables grown in manure-fertilized soil. Noncomposted bovine manure was applied to 9.3-m2 plots at three Wisconsin sites (loamy sand, silt loam, and silty clay loam) prior to spring and summer planting of carrots, radishes, and lettuce. Soil and washed (30 s under running tap water) vegetables were analyzed for indigenous Escherichia coli. Within 90 days, the level of E. coli in manure-fertilized soil generally decreased by about 3 log CFU/g from initial levels of 4.2 to 4.4 log CFU/g. Low levels of E. coli generally persisted in manure-fertilized soil for more than 100 days and were detected in enriched soil from all three sites 132 to 168 days after manure application. For carrots and lettuce, at least one enrichment-negative sample was obtained < or =100 days after manure application for 63 and 88% of the treatments, respectively. The current > or =120-day limit provided an even greater likelihood of not detecting E. coli on carrots (> or =1 enrichment-negative result for 100% of the treatments). The rapid maturation of radishes prevented conclusive evaluation of a 100- or 120-day application-to-harvest interval. The absolute absence of E. coli from vegetables harvested from manure-fertilized Wisconsin soils may not be ensured solely by adherence to the NOP > or =120-day limit. Unless pathogens are far better at colonizing vegetables than indigenous E. coli strains are, it appears that the risk of contamination for vegetables grown in Wisconsin soils would be elevated only slightly by reducing the NOP requirement to > or =100 days.  (+info)

Diversification and alteration of recognition specificity of the pollen ligand SP11/SCR in self-incompatibility of Brassica and Raphanus. (20/128)

The recognition specificity of the pollen ligand of self-incompatibility (SP11/SCR) was investigated using Brassica rapa transgenic plants expressing SP11 transgenes, and SP11 of Raphanus sativus S-21 was found to have the same recognition specificity as that of B. rapa S-9. In a set of three S haplotypes, whose sequence identities of SP11 and SRK are fairly high, R. sativus S-6 showed the same recognition specificity as Brassica oleracea S-18 and a slightly different specificity from B. rapa S-52. B. oleracea S-18, however, showed a different specificity from B. rapa S-52. Using these similar S haplotypes, chimeric SP11 proteins were produced by domain swapping. Bioassay using the chimeric SP11 proteins revealed that the incompatibility response induction activity was altered by the replacement of Region III and Region V. Pollen grains of Brassica transgenic plants expressing chimeric SP11 of the B. oleracea SP11-18 sequence with Region III and Region V from B. rapa SP11-52 (chimeric BoSP11-18[52]) were partially incompatible with the B. rapa S-52 stigmas, and those expressing the R. sativus SP11-6 sequence with Region III and Region V from B. rapa SP11-52 (chimeric RsSP11-6[52]) were completely incompatible with the stigmas having B. rapa S-52. However, the transgenic plant expressing chimeric RsSP11-6(52) also showed incompatibility with B. oleracea S-18 stigmas. These results suggest that Regions III and Region V of SP11 are important for determining the recognition specificity, but not the sole determinant. A possible process of the generation of a new S haplotype is herein discussed.  (+info)

Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. (21/128)

The genetic structure of populations of Turnip mosaic virus in Eurasia was assessed by making host range and gene sequence comparisons of 142 isolates. Most isolates collected in West Eurasia infected Brassica plants whereas those from East Eurasia infected both Brassica and Raphanus plants. Analyses of recombination sites (RSs) in five regions of the genome (one third of the full sequence) showed that the protein 1 (P1 gene) had recombined more frequently than the other gene regions in both subpopulations, but that the RSs were located in different parts of the genomes of the subpopulations. Estimates of nucleotide diversity showed that the West Eurasian subpopulation was more diverse than the East Eurasian subpopulation, but the Asian-BR group of the genes from the latter subpopulation had a greater nonsynonymous/synonymous substitution ratio, especially in the P1, viral genome-linked protein (VPg) and nuclear inclusion a proteinase (NIa-Pro) genes. These subpopulations seem to have evolved independently from the ancestral European population, and their genetic structure probably reflects founder effects.  (+info)

Cloning and characterization of a novel radish protein kinase which is homologous to fungal cot-I like and animal Ndr protein kinases. (22/128)

According to the similarity of the amino acid sequences in their catalytic domains, eukaryotic protein kinases have been classified into the five main groups: 'AGC', 'CaMK', 'CMGC', 'PTK' and 'other'. The AGC group, represented by the cyclic nucleotide-dependent kinases (PKA and PKG), the calcium-phospholipid-dependent kinases (PKC) and the ribosomal S6 protein kinases, are poorly characterized in plants except for a few cases. In this study, in order to gain a better understanding of plant protein kinases in the AGC group, three cDNAs encoding novel protein kinases, RsNdr1 and RsNdr2a/b, were cloned from radish and characterized by molecular and biochemical methods. The deduced amino acid sequences of RsNdr1 and RsNdr2a/b contained all 12 conserved catalytic subdomains which are characteristic of the eukaryotic Ser/Thr protein kinases. A cell lysate from E. coli overexpressing RsNdr1 fusion protein had protein kinase activity toward a conventional protein substrate (myelin basic protein), whereas that from E. coli harboring a fusion plasmid encoding kinase-dead RsNdr1 or RsNdr2 did not show any protein kinase activity. A phylogenetic tree for 17 protein kinases from various organisms showed that the RsNdrs are more closely related to the protein kinases in a particular subgroup of the 'AGC' (fungal cot1-like and animal Ndr kinases) than to the authentic 'AGC' protein kinases, such as PKA, PKC or ribosomal S6 kinase.  (+info)

Conversion of the carbohydrate structures of glycoproteins in roots of Raphanus sativus using several glycosidase inhibitors. (23/128)

An attempt was made to convert the N-glycan structures in Raphanus sativus seeds during germination with a view to develop a method for regulating the N-glycan structures using glycosidase inhibitors. The N-glycan structures of glycoproteins in the roots of seedlings germinated for three days were analyzed by hydrazinolysis followed by N-acetylation, pyridylamination and HPLC. Pyridylaminated sugar chains obtained in the absence of the inhibitors had plant type structures consisting of Man(3)FucXylGlcNAc(2)(M3FX), Man(5-9)GlcNAc(2)(high-Man) and GlcNAc(1-2)Man(3)FucXylGlcNAc(2)(GnM3FX and Gn2M3FX). When germinated in the presence of a glucosidase inhibitor (castanospermine or deoxynojirimycin), the amount of glucosyl high-Man-type structure increased and plant growth was inhibited. When germinated in the presence of a mannosidase inhibitor (swainsonine or deoxymannojirimycin), the amount of the high-Man-type structure increased and that of M3FX was low, and the growth was normal. In the presence of 2-acetamido 1, 2 di-deoxynojirimycin, those of GnM3FX and Gn2M3FX increased and the growth was normal. These results show that the N-glycan processing in both the endoplasmic reticulum (ER) and Golgi apparatus can be controlled artificially using glycosidase inhibitors, and that the glucosidase inhibitors could be useful for the study of the function of N-glycans in plants.  (+info)

Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus. (24/128)

The genetic basis for virulence in potyviruses is largely unknown. Earlier studies showed that there are two host types of Turnip mosaic virus (TuMV); the Brassica/Raphanus (BR)-host type infects both Brassica and Raphanus systemically, whereas the Brassica (B)-host type infects Brassica fully and systemically, but not Raphanus. The genetic basis of this difference has been explored by using the progeny of an infectious clone, p35Tunos; this clone is derived from the UK1 isolate, which is of the B-host type, but rarely infects Raphanus systemically and then only asymptomatically. Two inocula from one such infection were adapted to Raphanus by passaging, during which the infectivity and concentration of the virions of successive infections increased. The variant genomes in the samples, 16 in total, were sequenced fully. Four of the 39 nucleotide substitutions that were detected among the Raphanus sativus-adapted variant genomes were probably crucial for adaptation, as they were found in several variants with independent passage histories. These four were found in the protein 1 (P1), protein 3 (P3), cylindrical inclusion protein (CI) and genome-liked viral protein (VPg) genes. One of four 'parallel evolution' substitutions, 3430G-->A, resulted in a 1100Met-->Ile amino acid change in the C terminus of P3. It seems likely that this site is important in the initial stages of adaptation to R. sativus. Other independent substitutions were mostly found in the P3, CI and VPg genes.  (+info)