Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis. (1/25)

Two high mountain plants Soldanella alpina (L.) and Ranunculus glacialis (L.) were transferred from their natural environment to two different growth conditions (22 degrees C and 6 degrees C) at low elevation in order to investigate the possibility of de-acclimation to light and cold and the importance of antioxidants and metabolite levels. The results were compared with the lowland crop plant Pisum sativum (L.) as a control. Leaves of R. glacialis grown for 3 weeks at 22 degrees C were more sensitive to light-stress (defined as damage to photosynthesis, reduction of catalase activity (EC 1.11.1.6) and bleaching of chlorophyll) than leaves collected in high mountains or grown at 6 degrees C. Light-stress tolerance of S. alpina leaves was not markedly changed. Therefore, acclimation is reversible in R. glacialis leaves, but constitutive or long-lasting in S. alpina leaves. The different growth conditions induced significant changes in non-photochemical fluorescence quenching (qN) and the contents of antioxidants and xanthophyll cycle pigments. These changes did not correlate with light-stress tolerance, questioning their role for light- and cold-acclimation of both alpine species. However, ascorbate contents remained very high in leaves of S. alpina under all growth conditions (12-19% of total soluble carbon). In cold-acclimated leaves of R. glacialis, malate represented one of the most abundant compounds of total soluble carbon (22%). Malate contents declined significantly in de-acclimated leaves, suggesting a possible involvement of malate, or malate metabolism, in light-stress tolerance. Leaves of the lowland plant P. sativum were more sensitive to light-stress than the alpine species, and contained only low amounts of malate and ascorbate.  (+info)

Survival of Ranunculus repens L. (creeping buttercup) in an amphibious habitat. (2/25)

The turlough form of Ranunculus repens is subjected to several months' complete inundation with hard groundwater. Experimental flooding to the level of the soil surface had no effect on turlough or ruderal populations relative to drained controls. Experimental submergence resulted in direct tissue death of the ruderal population but did not affect the turlough population relative to drained controls. There was no detectable difference in the proportion of aerenchyma in drained, flooded and submerged roots of plants from either population. The proportion of aerenchyma increased with root age in the ruderal population. Up to twice the proportion of aerenchyma occurred in the lower third of the root in the turlough population relative to the middle and upper thirds. Submergence in artificially hardened tap water increased the amount of tissue death in the ruderal population, whereas it appeared to enhance the growth of plants from the turlough population relative to that of plants submerged in tap water. Only the ruderal population demonstrated a depth accommodation response in submerged conditions. Root concentrations of ethanol-soluble carbohydrates were up to three times higher in a field- collected turlough population during winter and autumn months than those in a ruderal population. Low levels of ethanol-insoluble carbohydrates were present in the turlough population but were absent from the ruderal population. Starch concentrations fluctuated greatly in the turlough population and were generally higher than those in the ruderal population. These results, together with those from previous investigations, suggest that the turlough population survives prolonged submergence by maintaining low levels of submerged photosynthesis, which may circulate oxygen within the plant tissues, and by utilizing storage carbohydrates for maintenance respiration.  (+info)

To succeed globally, disperse locally: effects of local pollen and seed dispersal on tetraploid establishment. (3/25)

Newly formed tetraploid plants in sympatry with their diploid progenitors should face significant obstacles to persistence and population establishment because of low-fitness triploids formed by cross-ploidy pollinations. Prior models have found restrictive conditions for a minority tetraploid subpopulation to persist. A stochastic spatial model, parameterized using snow buttercups (Ranunculus adoneus), was used to examine the influence of limited seed and pollen dispersal distances on the success of minority tetraploids and the interaction of these factors with different rates of self-pollination and tetraploid advantage. Higher rates of self-pollination and increased tetraploid advantage increase the probability of tetraploid persistence. Limiting the dispersal of seeds and pollen further increases the positive impact of any given level of self-pollination and tetraploid advantage. Taxa with short-distance seed and pollen dispersal should face much less stringent barriers to sympatric polyploid speciation than taxa with long-distance dispersal patterns. With short-distance seed and pollen dispersal, polyploid speciation should be possible in the absence of ecological differentiation or recurrent polyploid formation through unreduced gametes.  (+info)

Genomic compatibility occurs over a wide range of parental genetic similarity in an outcrossing plant. (4/25)

The theory of inbreeding and outbreeding suggests that there is a hump-shaped relationship between the genetic similarity of sexually reproducing parents and the performance of their offspring. Inbreeding depression occurs when genetic similarity is high, whereas hybrid breakdown is expected when genetic similarity is low. Between these extremes, the effect of genetic similarity on fitness is unclear. We studied the shape of this relationship by crossing 65 target genotypes of the clonal, self-incompatible Ranunculus reptans with partner genotypes spanning a broad scale of genetic similarity, ranging from crosses within populations to between-population crosses and hybridisation with a closely related species. Offspring were raised in outdoor tubs. Results revealed a quadratic relationship between parental genetic distance and offspring performance, with the clonal component of fitness more strongly hump-shaped than the sexual component. Optimal genetic similarity encompassed a broad range of within-population and between-population crosses. This pattern of genomic compatibility has important implications for the evolution of mating systems and mate choice.  (+info)

Genetic rescue in interconnected populations of small and large size of the self-incompatible Ranunculus reptans. (5/25)

Small populations of our study species Ranunculus reptans have reduced fitness because of inbreeding, genetic load, and reduced mate availability; that is, they suffer from a three-fold genetic Allee effect. Here, we investigate how the effect of interpopulation outbreeding on offspring fitness depends on population size. We performed within- and between-population crosses with plants originating from 15 populations, and measured offspring performance in a common environment. Interpopulation outbreeding led to an increase in population means of clonal performance, which was defined as the number of rooted offspring rosettes produced per maternal ovule. This fitness gain mainly occurred at the life stage of seed set. It was especially pronounced for populations with a long-term history of small size inferred from their low genetic diversity, estimated from eight allozyme loci. We conclude that in a self-incompatible plant such as R. reptans, interpopulation outbreeding can lead to an immediate genetic rescue effect due to increased cross-compatibility and heterosis, and that this rescue effect is increased as population size decreases.  (+info)

Evolution of hypervariable microsatellites in apomictic polyploid lineages of Ranunculus carpaticola: directional bias at dinucleotide loci. (6/25)

Microsatellites are widely used in genetic and evolutionary analyses, but their own evolution is far from simple. The mechanisms maintaining the mutational patterns of simple repeats and the typical stable allele-frequency distributions are still poorly understood. Asexual lineages may provide particularly informative models for the indirect study of microsatellite evolution, because their genomes act as complete linkage groups, with mutations being the only source of genetic variation. Here, we study the direction of accumulated dinucleotide microsatellite mutations in wild asexual lineages of hexaploid Ranunculus carpaticola. Whereas the overall number of contractions is not significantly different from that of expansions, the within-locus frequency of contractions, but not of expansions, significantly increases with allele length. Moreover, within-locus polymorphism is positively correlated with allele length, but this relationship is due solely to the influence of contraction mutations. Such asymmetries may explain length constraints generally observed with microsatellites and are consistent with stable, bell-shaped allele-frequency distributions. Although apomictic and allohexaploid, the R. carpaticola lineages show mutational patterns resembling the trends observed in a broad range of organisms, including sexuals and diploids, suggesting that, even if not of germline origin, the mutations in these apomicts may be the consequence of similar mechanisms.  (+info)

Respiratory carbon metabolism in the high mountain plant species Ranunculus glacialis. (7/25)

Very little is known about the primary carbon metabolism of the high mountain plant Ranunculus glacialis. It is a species with C3 photosynthesis, but with exceptionally high malate content in its leaves, the biological significance of which remains unclear. 13C/12C-isotope ratio mass spectrometry (IRMS) and 13C-nuclear magnetic resonance (NMR) labelling were used to study the carbon metabolism of R. glacialis, paying special attention to respiration. Although leaf dark respiration was high, the temperature response had a Q10 of 2, and the respiratory quotient (CO2 produced divided by O2 consumed) was nearly 1, indicating that the respiratory pool is comprised of carbohydrates. Malate, which may be a large carbon substrate, was not respired. However, when CO2 fixed by photosynthesis was labelled, little labelling of the CO2 subsequently respired in the dark was detected, indicating that: (i) most of the carbon recently assimilated during photosynthesis is not respired in the dark; and (ii) the carbon used for respiration originates from (unlabelled) reserves. This is the first demonstration of such a low metabolic coupling of assimilated and respired carbon in leaves. The biological significance of the uncoupling between assimilation and respiration is discussed.  (+info)

No genetic diversity at molecular markers and strong phenotypic plasticity in populations of Ranunculus nodiflorus, an endangered plant species in France. (8/25)

BACKGROUND AND AIMS: Although conservation biology has long focused on population dynamics and genetics, phenotypic plasticity is likely to play a significant role in population viability. Here, an investigation is made into the relative contribution of genetic diversity and phenotypic plasticity to the phenotypic variation in natural populations of Ranunculus nodiflorus, a rare annual plant inhabiting temporary puddles in the Fontainebleau forest (Paris region, France) and exhibiting metapopulation dynamics. METHODS: The genetic diversity and phenotypic plasticity of quantitative traits (morphological and fitness components) were measured in five populations, using a combination of field measurements, common garden experiments and genotyping at microsatellite loci. KEY RESULTS: It is shown that populations exhibit almost undetectable genetic diversity at molecular markers, and that the variation in quantitative traits observed among populations is due to a high level of phenotypic plasticity. Despite the lack of genetic diversity, the natural population of R. nodiflorus exhibits large population sizes and does not appear threatened by extinction; this may be attributable to large phenotypic plasticity, enabling the production of numerous seeds under a wide range of environmental conditions. CONCLUSIONS: Efficient conservation of the populations can only be based on habitat management, to favour the maintenance of microenvironmental variation and the resulting strong phenotypic plasticity. In contrast, classical actions aiming to improve genetic diversity are useless in the present case.  (+info)