Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. (25/1553)

Giant cell tumor of bone (GCT) is a rare primary osteolytic tumor of bone that is characterized by massive tissue destruction at the epiphysis of long bones. There is no evidence that tumor cells themselves are capable of bone destruction; instead, it appears that the tumor cells of GCT act by promoting osteoclastogenesis and, as a consequence, osteoclastic bone resorption. However, the mechanism by which this is achieved is not understood. Here we attempted to determine whether osteoprotegerin ligand (OPGL), the factor that is necessary and essential for osteoclastogenesis, is involved in tumor cell-recruited osteoclast-like giant cell formation in GCT. Using fluorescence in situ hybridization, we sought to determine mRNA expression of OPGL, its receptor RANK, and its decoy receptor OPG in three major cell types of GCT. We demonstrated that OPG mRNA was expressed in all three cell types of GCT, OPGL transcripts were mainly detected in spindle-shaped stromal-like tumor cells, whereas RANK was expressed only in macrophage-like mononuclear cells and multinuclear osteoclast-like giant cells. By semiquantitative RT-PCR, we also showed that the level of OPGL mRNA in GCT is much higher than that in normal bone and osteogenic osteosarcoma. In contrast, a similar level of OPG transcripts was detected in these three kinds of tissues, and RANK mRNA was detectable only in GCT tissues. We have further examined the regulation of gene expression of OPGL and OPG in tumor cells in response to osteotropic hormones. Administration of 1,25(OH)(2)D(3) and dexamethasone resulted in maximum up-regulation of OPGL level and down-regulation of OPG level in cultured GCT stromal-like tumor cells and the mouse bone marrow-derived ST-2 stromal cell line. Furthermore, we have shown that tumor cells of GCT induce differentiation of RANK-expressing myeloid RAW(264.7) cells into osteoclast-like cells in the presence of 1,25(OH)(2)D(3) and dexamethasone. Our findings suggest that OPGL is involved in the tumor cell-induced osteoclast-like cell formation in GCT. The ratio of OPGL/OPG by tumor cells may contribute to the degree of osteoclastogenesis and bone resorption.  (+info)

Osteoclasts expressing the measles virus nucleocapsid gene display a pagetic phenotype. (26/1553)

Osteoclasts (OCLs) in Paget's disease are markedly increased in number and size, have increased numbers of nuclei per multinucleated cell, and demonstrate increased resorption capacity and increased sensitivity to 1,25-(OH)(2)D(3), the active form of vitamin D. These cells also contain nuclear inclusions, reminiscent of those seen in paramyxovirus-infected cells, which cross-react with antibodies to measles virus nucleocapsid (MVNP) antigen. To elucidate the role of MV in the abnormal OCL phenotype of Paget's disease, we transduced normal OCL precursors with retroviral vectors expressing MVNP and the MV matrix (MVM) genes. The transduced cells were then cultured with 1,25-(OH)(2)D(3) for14 or 21 days to induce formation of OCL-like multinucleated cells. The MVNP-transduced cells formed increased numbers of multinucleated cells, which contained many more nuclei and had increased resorption capacity compared with multinucleated cells derived from empty vector-transduced (EV-transduced) and MVM-transduced or normal bone marrow cells. Furthermore, MVNP-transduced cells showed increased sensitivity to 1, 25-(OH)(2)D(3), and formed OCLs at concentrations of 1, 25-(OH)(2)D(3) that were 1 log lower than that required for normal, EV-transduced, or MVM-transduced cells. These results demonstrate that expression of the MVNP gene in normal OCL precursors stimulates OCL formation and induces OCLs that express a phenotype similar to that of pagetic OCLs. These results support a potential pathophysiologic role for MV infection in the abnormal OCL activity and morphology that are characteristic of pagetic OCLs.  (+info)

Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. (27/1553)

We examined the effect on osteoclast formation of disrupting the prostaglandin G/H synthase genes PGHS-1 and-2. Prostaglandin E(2) (PGE(2)) production was significantly reduced in marrow cultures from mice lacking PGHS-2 (PGHS-2(-/-)) compared with wild-type (PGHS-2(+/+)) cultures. Osteoclast formation, whether stimulated by 1,25-dihydroxyvitamin D(3) (1,25-D) or by parathyroid hormone (PTH), was reduced by 60-70% in PGHS-2(-/-) cultures relative to wild-type cultures, an effect that could be reversed by providing exogenous PGE(2). Cultures from heterozygous mice showed an intermediate response. PGHS inhibitors caused a similar drop in osteoclast formation in wild-type cultures. Co-culture experiments showed that supporting osteoblasts, rather than osteoclast precursors, accounted for the blunted response to 1,25-D and PTH. This lack of response appeared to result from reduced expression of RANK ligand (RANKL) in osteoblasts. We cultured spleen cells with exogenous RANKL and found that osteoclast formation was 50% lower in PGHS-2(-/-) than in wild-type cultures, apparently because the former cells expressed high levels of GM-CSF. Injection of PTH above the calvaria caused hypercalcemia in wild-type but not PGHS-2(-/-) mice. Histological examination of bone from 5-week-old PGHS-2(-/-) mice revealed no abnormalities. Mice lacking PGHS-1 were similar to wild-type mice in all of these parameters. These data suggest that PGHS-2 is not necessary for wild-type bone development but plays a critical role in bone resorption stimulated by 1,25-D and PTH.  (+info)

Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. (28/1553)

OBJECTIVE: To investigate the cellular mechanism of bone destruction in collagen-induced arthritis (CIA). METHODS: After induction of CIA in DA rats, a histologic study of the advanced arthritic lesion was carried out on whole, decalcified joints from the hindpaws of affected animals. To conclusively identify osteoclasts, joint tissue sections were stained for tartrate-resistant acid phosphatase (TRAP) enzyme activity, and calcitonin receptors (CTR) were identified using a specific rabbit polyclonal antibody. The expression of messenger RNA (mRNA) for the osteoclast differentiation factor (also known as receptor activator of nuclear factor kappaB ligand [RANKL]) was investigated using in situ hybridization with a specific riboprobe. RESULTS: TRAP-positive and CTR-positive multinucleated cells were invariably detected in arthritic lesions that were characterized by bone destruction. Osteoclasts were identified at the pannus-bone and pannus-subchondral bone junctions of arthritic joints, where they formed erosive pits in the bone. TRAP-positive multinucleated cells were detected within synovium and at the bone erosive front; however, CTR-positive multinucleated cells were present only at sites adjacent to bone. RANKL mRNA was highly expressed in the synovial cell infiltrate in arthritic joints, as well as by osteoclasts at sites of bone erosion. CONCLUSION: Focal bone erosion in CIA is attributed to cells expressing definitive features of osteoclasts, including CTR. The expression of RANKL by cells within inflamed synovium suggests a mechanism for osteoclast differentiation and activation at sites of bone erosion. Inhibitors of RANKL may represent a novel approach to treatment of bone loss in rheumatoid arthritis.  (+info)

Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. (29/1553)

In just 3 years, striking new advances have been made in understanding the molecular mechanisms that govern the crosstalk between osteoblasts/stromal cells and hemopoietic osteoclast precursor cells that leads to osteoclastogenesis. Led first by the discovery of osteoprotegerin (OPG), a naturally occurring protein with potent osteoclastogenesis inhibitory activity, rapid progress was made to the isolation of RANKL, a transmembrane ligand expressed on osteoblasts/stromal cells, that binds to RANK, a transmembrane receptor on hemopoietic osteoclast precursor cells. The interaction of RANK and RANKL initiates a signaling and gene expression cascade that results in differentiation and maturation of osteoclast precursor cells to active osteoclasts capable of resorbing bone. Osteoprotegerin acts as a decoy receptor; it binds to RANKL and blocks its interaction with RANK, thus inhibiting osteoclast development. Many of the calciotropic hormones and cytokines, including vitamin D3, parathyroid hormone, prostaglandin E2 and interleukin-11, appear to stimulate osteoclastogenesis through the dual action of inhibiting production of OPG and stimulating production of RANKL. Estrogen, on the other hand, appears to inhibit production of RANKL and RANKL-stimulated osteoclastogenesis. Recently, the results of the first clinical trial with OPG supported its potential as a therapeutic agent for osteoporosis. The new understanding provided by the RANK/RANKL/OPG paradigm for both differentiation and activation of osteoclasts has had tremendous impact on the field of bone biology and has opened new avenues for development of possible treatments of diseases characterized by excessive bone resorption.  (+info)

Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. (30/1553)

The nuclear receptor and transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR-gamma), regulates the activity of other transcription factors in the adipogenic differentiation and inflammatory response pathways. We examined the possible function of the PPAR-gamma pathway in osteoclast (Ocl) formation from CD34(+) hematopoietic stem cells (CD34(+) HSCs), using a co-culture system comprised of human mesenchymal stem cells (hMSCs) and CD34(+) HSCs, both derived from bone marrow. Ocl formation in this co-culture system is enhanced by the addition of exogenous osteoprotegerin ligand (OPGL), an essential Ocl differentiation factor, and macrophage-colony stimulating factor (M-CSF). The data indicate that soluble OPGL (sOPGL) and M-CSF stimulate Ocl formation in the co-cultures up to 4-fold compared with CD34(+) HSCs alone treated with sOPGL and M-CSF. CD34(+) HSCs, but not hMSCs, express PPAR-gamma, and 15-deoxy-Delta(12, 14)-prostaglandin-J2 (15d-PG-J2), a PPAR-gamma agonist, completely blocked the effects of sOPGL and M-CSF on Ocl formation and activity. The inhibitory effect of 15d-PG-J2 is specific to the Ocl lineage in both human and mouse models of osteoclastogenesis. Accordingly, parallel experiments demonstrate that sOPGL activates the NF-kappaB pathway within mouse Ocl progenitors, and this effect was abolished by 15d-PG-J2. These data establish a link between PPAR-gamma and OPGL signaling within Ocl progenitors, and support a role for PPAR-gamma pathway in the modulation of osteoclastogenesis.  (+info)

The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. (31/1553)

Bone formation and resorption are tightly coupled under normal conditions, and the interaction of osteoclast precursors with cells of the osteoblast lineage is a prerequisite for osteoclast formation. Cbfa1 is an osteoblast-specific transcription factor that is essential for osteoblast differentiation and bone formation. At present, it is not known whether Cbfa1 regulates any of the osteoblast-derived factors involved in the bone resorption pathway. Osteoprotegerin (OPG) is an osteoblast-secreted glycoprotein that functions as a potent inhibitor of osteoclast differentiation and bone resorption. Cloning and computer analysis of a 5.9-kilobase human OPG promoter sequence revealed the presence of 12 putative Cbfa1 binding elements (osteoblast-specific element 2 (OSE(2))), suggesting a possible regulation of OPG by Cbfa1. We cloned the promoter upstream of the beta-galactosidase reporter gene (pOPG5. 9betagal) and evaluated whether Cbfa1 could regulate its expression in transient transfection assays. The 5.9-kilobase promoter directed increased levels of reporter gene expression, reminiscent of OPG protein levels in osteoblastic cell lines (BALC and U2OS) as compared with the nonosteoblastic cell line COS1. Cotransfection of a Cbfa1 expression construct along with pOPG5.9betagal reporter construct led to 39-, 7-, and 16-fold increases in beta-galactosidase activity in COS1, BALC, and U2OS cells, respectively. Removal of all the putative OSE(2) elements led to an almost complete loss of transactivation. Mutational analysis demonstrated that the proximal OSE(2) element contributes to a majority of the effects of Cbfa1, and Cbfa1 bound to the proximal element in a sequence-specific manner. Further, overexpression of Cbfa1 led to a 54% increase in OPG protein levels in U2OS cells. These results indicate that Cbfa1 regulates the expression of OPG, thereby further contributing to a molecular link between bone formation and resorption.  (+info)

Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. (32/1553)

Normal dynamic loading prevents bone resorption; however, the means whereby biophysical factors reduce osteoclast activity are not understood. We show here that mechanical strain (2% at 10 cycles per minute) applied to murine marrow cultures reduced 1, 25(OH)(2)D(3)-stimulated osteoclast formation by 50%. This was preceded by decreased expression of osteoclast differentiation factor (ODF/TRANCE). RT-PCR for ODF/TRANCE revealed that ODF/TRANCE mRNA in strained cultures was 59 +/- 3% of that seen in control cultures. No significant effects on total cell count, thymidine uptake, or alkaline phosphatase activity were induced by strain. To isolate the cell targeted by strain, primary stromal cells were cultured from marrow. Mechanical strain also reduced mRNA for ODF/TRANCE to 60% that of control in these cells. In contrast, mRNA for membrane-bound macrophage colony-stimulating factor was not significantly affected. Soluble ODF ( approximately 2 ng/ml) was able to reverse the effect of strain, returning osteoclast numbers to control. Because osteoclast formation is dependent upon ODF/TRANCE expression, strain-induced reductions in this factor may contribute to the accompanying reduction in osteoclastogenesis.  (+info)