Cardiac sympathetic activity estimated by 123I-MIBG myocardial imaging in patients with dilated cardiomyopathy after beta-blocker or angiotensin-converting enzyme inhibitor therapy. (1/6785)

Impaired cardiac sympathetic activity can be evaluated by 123I-metaiodobenzylguanidine (MIBG) imaging. METHODS: We studied the significance of MIBG imaging for 24 patients (age 58+/-12 y) with dilated cardiomyopathy (DCM). We compared 12 patients (group A) treated with metoprolol (dose from 30-60 mg/d) with 12 patients treated with angiotensin-converting enzyme (ACE) inhibitors. Patients were studied before treatment, after 5 mo of treatment (only in group A) and after 1 y of treatment. Cardiac MIBG uptake was assessed as the heart-to-mediastinum activity ratio (H/M) and total defect score (TDS) from anterior planar and SPECT MIBG images, which were acquired in 4 h after tracer injection. New York Heart Association (NYHA) class and left ventricular ejection fraction (LVEF) calculated by echocardiography were also assessed. RESULTS: TDS decreased in both groups (in group A, from 30+/-7 through 23+/-9 to 18+/-10; P < 0.01, in group B, from 30+/-6 to 24+/-8; P < 0.01) and H/M was increased in both groups (in group A, from 1.87+/-0.31 through 2.03+/-0.28 to 2.14+/-0.29; P < 0.01, in group B, from 1.82+/-0.28 to 1.94+/-0.26; P < 0.05). But TDS and H/M were more improved in group A than in group B (P < 0.05). LVEF was significantly increased in only group A (from 38+/-6 through 43+/-8 to 49%+/-9%; P < 0.01). NYHA improved in both groups (in group A, from mean 2.5 through 2.1 to 1.8; P < 0.01, in group B, from mean 2.6 to 2.1; P < 0.05) but was more improved in group A than in group B (P < 0.05). CONCLUSION: Cardiac function, symptom and cardiac sympathetic activity evaluated by MIBG images improved after the beta-blocker therapy more than with the treatment that used ACE inhibitors.  (+info)

Sympathetic nerve alterations assessed with 123I-MIBG in the failing human heart. (2/6785)

Norepinephrine (NE) reuptake function is impaired in heart failure and this may participate in myocyte hyperstimulation by the neurotransmitter. This alteration can be assessed by 123I-metaiodobenzylguanidine (MIBG) scintigraphy. METHODS: To determine whether the impairment of neuronal NE reuptake was reversible after metoprolol therapy, we studied 18 patients (43+/-7 y) with idiopathic dilated cardiomyopathy who were stabilized at least for 3 mo with captopril and diuretics. Patients underwent, before and after 6 mo of therapy with metoprolol, measurements of radionuclide left ventricular ejection fraction (LVEF), maximal oxygen consumption and plasma NE concentration. The cardiac adrenergic innervation function was scintigraphically assessed with MIBG uptake and release measurements on the planar images obtained 20 min and 4 h after tracer injection. To evaluate whether metoprolol had a direct interaction with cardiac MIBG uptake and release, six normal subjects were studied before and after a 1-mo metoprolol intake. RESULTS: In controls, neither cardiac MIBG uptake and release nor circulating NE concentration changed after the 1-mo metoprolol intake. Conversely, after a 6-mo therapy with metoprolol, patients showed increased cardiac MIBG uptake (129%+/-10% versus 138%+/-17%; P = 0.009), unchanged cardiac MIBG release and decreased plasma NE concentration (0.930+/-412 versus 0.721+/-0.370 ng/mL; P = 0.02). In parallel, patients showed improved New York Heart Association class (2.44+/-0.51 versus 2.05+/-0.23; P = 0.004) and increased LVEF (20%+/-8% versus 27%+/-8%; P = 0.0005), whereas maximal oxygen uptake remained unchanged. CONCLUSION: Thus, a parallel improvement of myocardial NE reuptake and of hemodynamics was observed after a 6-mo metoprolol therapy, suggesting that such agents may be beneficial in heart failure by directly protecting the myocardium against excessive NE stimulation.  (+info)

Sensitivity of [11C]phenylephrine kinetics to monoamine oxidase activity in normal human heart. (3/6785)

Phenylephrine labeled with 11C was developed as a radiotracer for imaging studies of cardiac sympathetic nerves with PET. A structural analog of norepinephrine, (-)-[11C]phenylephrine (PHEN) is transported into cardiac sympathetic nerve varicosities by the neuronal norepinephrine transporter and stored in vesicles. PHEN is also a substrate for monoamine oxidase (MAO). The goal of this study was to assess the importance of neuronal MAO activity on the kinetics of PHEN in the normal human heart. MAO metabolism of PHEN was inhibited at the tracer level by substituting deuterium atoms for the two hydrogen atoms at the alpha-carbon side chain position to yield the MAO-resistant analog D2-PHEN. METHODS: Paired PET studies of PHEN and D2-PHEN were performed in six normal volunteers. Hemodynamic and electrocardiographic responses were monitored. Blood levels of intact radiotracer and radiolabeled metabolites were measured in venous samples taken during the 60 min dynamic PET study. Myocardial retention of the tracers was regionally quantified as a retention index. Tracer efflux between 6 and 50 min after tracer injection was fit to a single exponential process to obtain a washout half-time for all left ventricular regions. RESULTS: Although initial heart uptake of the two tracers was similar, D2-PHEN cleared from the heart 2.6 times more slowly than PHEN (mean half-time 155+/-52 versus 55+/-10 min, respectively; P < 0.01). Correspondingly, heart retention of D2-PHEN at 40-60 min after tracer injection was higher than PHEN (mean retention indices 0.086+/-0.018 versus 0.066+/-0.011 mL blood/ min/mL tissue, respectively; P < 0.003). CONCLUSION: Efflux of radioactivity from normal human heart after uptake of PHEN is primarily due to metabolism of the tracer by neuronal MAO. Related mechanistic studies in the isolated rat heart indicate that vesicular storage of PHEN protects the tracer from rapid metabolism by neuronal MAO, suggesting that MAO metabolism of PHEN leaking from storage vesicles leads to the gradual loss of PHEN from the neurons. Thus, although MAO metabolism influences the rate of clearance of PHEN from the neurons, MAO metabolism is not the rate-determining step in the observed efflux rate under normal conditions. Rather, the rate at which PHEN leaks from storage vesicles is likely to be the rate-limiting step in the observed efflux rate.  (+info)

Enhanced myocardial glucose use in patients with a deficiency in long-chain fatty acid transport (CD36 deficiency). (4/6785)

CD36 is a multifunctional, 88 kDa glycoprotein that is expressed on platelets and monocytes/macrophages. CD36 also has high homology with the long-chain fatty acid (LFA) transporter in the myocardium. Although platelet and monocyte CD36 levels can indicate a CD36 deficiency, they cannot predict specific clinical manifestations in the myocardium of a given person. We examined the hypothesis that a deficiency in LFA transport augments myocardial glucose uptake in patients with a type I CD36 deficiency. METHODS: Seven fasting patients with a type I CD36 deficiency and 9 controls were assessed by cardiac radionuclide imaging using beta-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) as a LFA tracer and by PET with 18F-fluorodeoxyglucose (FDG). RESULTS: None of the patients with a CD36 deficiency showed myocardial uptake of BMIPP. The percentage dose uptake of BMIPP in these subjects was significantly lower than that in normal controls (1.31+/-0.24 versus 2.90+/-0.2; P < 0.005). PET studies revealed that myocardial FDG accumulation was substantially increased in patients with a CD36 deficiency. Quantitative analysis showed that the percentage dose uptake of FDG in patients with a CD36 deficiency was significantly higher than that in normal controls (1.28+/-0.35 versus 0.43+/-0.22; P< 0.01). CONCLUSION: CD36 functions as a major myocardial LFA transporter and its absence may cause a compensatory upregulation of myocardial glucose uptake.  (+info)

Parametric mapping of cerebral blood flow deficits in Alzheimer's disease: a SPECT study using HMPAO and image standardization technique. (5/6785)

This study assessed the accuracy and reliability of Automated Image Registration (AIR) for standardization of brain SPECT images of patients with Alzheimer's disease (AD). Standardized cerebral blood flow (CBF) images of patients with AD and control subjects were then used for group comparison and covariance analyses. METHODS: Thirteen patients with AD at an early stage (age 69.8+/-7.1 y, Clinical Dementia Rating Score 0.5-1.0, Mini-Mental State Examination score 19-23) and 20 age-matched normal subjects (age 69.5+/-8.3 y) participated in this study. 99mTc-hexamethyl propylenamine oxime (HMPAO) brain SPECT and CT scans were acquired for each subject. SPECT images were transformed to a standard size and shape with the help of AIR. Accuracy of AIR for spatial normalization was evaluated by an index calculated on SPECT images. Anatomical variability of standardized target images was evaluated by measurements on corresponding CT scans, spatially normalized using transformations established by the SPECT images. Realigned brain SPECT images of patients and controls were used for group comparison with the help of statistical parameter mapping. Significant differences were displayed on the respective voxel to generate three-dimensional Z maps. CT scans of individual subjects were evaluated by a computer program for brain atrophy. Voxel-based covariance analysis was performed on standardized images with ages and atrophy indices as independent variables. RESULTS: Inaccuracy assessed by functional data was 2.3%. The maximum anatomical variability was 4.9 mm after standardization. Z maps showed significantly decreased regional CBF (rCBF) in the frontal, parietal and temporal regions in the patient group (P < 0.001). Covariance analysis revealed that the effects of aging on rCBF were more pronounced compared with atrophy, especially in intact cortical areas at an early stage of AD. Decrease in rCBF was partly due to senility and atrophy, however these two factors cannot explain all the deficits. CONCLUSION: AIR can transform SPECT images of AD patients with acceptable accuracy without any need for corresponding structural images. The frontal regions of the brain, in addition to parietal and temporal lobes, may show reduced CBF in patients with AD even at an early stage of dementia. The reduced rCBF in the cortical regions cannot be explained entirely by advanced atrophy and fast aging process.  (+info)

Detection of liver metastases from pancreatic cancer using FDG PET. (6/6785)

We evaluated the potential of the glucose analog [18F]fluorodeoxyglucose (FDG) as a PET tracer for the hepatic staging in 168 patients designated for resective pancreatic surgery. METHODS: Metastatic liver disease was confirmed or excluded during surgery or with CT follow-up for at least 6 mo. Proven metastases were then retrospectively identified on preoperative CT (gold standard). Hepatic PET scans of all patients were interpreted blindly. Any focal FDG uptake was considered malignant. Both proven hepatic metastases and suspicious hepatic PET lesions were then compared, lesion by lesion, with CT. Standardized uptake values (SUV) and tumor-to-liver ratios (T/L) were determined for the most intense lesion of each patient. RESULTS: Sensitivity of FDG PET was 68% (15 of 22 patients). The lesion detection rate was 97% (28 of 29 metastases) for lesions >1 cm and 43% (16 of 37 metastases) for lesions < or = 1 cm. Specificity was 95% (138 of 146 patients). Six of eight patients with false-positive results had marked intrahepatic cholestasis (versus 3 of 15 patients with true-positive lesions), one had an infrahepatic abscess and one had a right basal pulmonary metastasis. The SUV and T/L were 4.6+/-1.4 and 2.3+/-1.1, respectively, for malignant lesions and 4.1+/-1.5 and 1.9+/-0.3, respectively, for false-positive lesions and therefore are of limited value. CONCLUSION: FDG PET provides reliable hepatic staging for lesions >1 cm. False-positive results are associated with the presence of marked intrahepatic cholestasis. For lesions < or = 1 cm, FDG PET can define malignancy in 43% of suspicious CT lesions in the absence of dilated bile ducts.  (+info)

L-[1-11C]-tyrosine PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma and skin cancer. (7/6785)

PET with L-[1-11C]-tyrosine (TYR) was investigated in patients undergoing hyperthermic isolated limb perfusion (HILP) with recombinant tumor necrosis factor alpha (rTNF-alpha) and melphalan for locally advanced soft-tissue sarcoma and skin cancer of the lower limb. METHODS: Seventeen patients (5 women, 12 men; age range 24-75 y; mean age 52 y) were studied. TYR PET studies were performed before HILP and 2 and 8 wk afterwards. The protein synthesis rates (PSRs) in nanomoles per milliliter per minute were calculated. After final PET studies, tumors were resected and pathologically examined. Patients with pathologically complete responses (pCR) showed no viable tumors after treatment. Those with pathologically partial responses (pPR) showed various amounts of viable tumors in the resected tumor specimens. RESULTS: Six patients (35%) showed a pCR and 11 patients (65%) showed a pPR. All tumors were depicted as hot spots on PET studies before HILP. The PSR in the pCR group at 2 and 8 wk after perfusion had decreased significantly (P < 0.05) in comparison to the PSR before HILP. A significant difference was found in PSR between the pCR and pPR groups at 2 and at 8 wk (P < 0.05). Median PSR in nonviable tumor tissue was 0.62 and ranged from 0.22 to 0.91. With a threshold PSR of 0.91, sensitivity and specificity of TYR PET were 82% and 100%, respectively. The predictive value of a PSR > 0.91 for having viable tumor after HILP was 100%, whereas the predictive value of a PSR < or = 0.91 for having nonviable tumor tissue after HILP was 75%. The 2 patients in the pPR groups with a PSR < 0.91 showed microscopic islets of tumor cells surrounded by extensive necrosis on pathological examination. CONCLUSION: Based on the calculated PSR after HILP, TYR PET gave a good indication of the pathological outcome. Inflammatory tissue after treatment did not interfere with viable tumor on the images, suggesting that it may be worthwhile to pursue TYR PET in other therapy evaluation settings.  (+info)

Segmental colonic transit after oral 67Ga-citrate in healthy subjects and those with chronic idiopathic constipation. (8/6785)

Measurement of segmental colonic transit is important in the assessment of patients with severe constipation. 111In-diethylenetriamine pentaacetic acid (DTPA) has been established as the tracer of choice for these studies, but it is expensive and not readily available. 67Ga-citrate is an inexpensive tracer and when given orally is not absorbed from the bowel. It was compared with 111In-DTPA in colonic transit studies in nonconstipated control subjects and then in patients with idiopathic constipation. METHODS: Studies were performed after oral administration of 3 MBq (81 microCi) 67Ga-citrate or 4 MBq (108 microCi) 111In-DTPA in solution. Serial abdominal images were performed up to 96 h postinjection, and computer data were generated from geometric mean images of segmental retention of tracer, mean activity profiles and a colonic tracer half-clearance time. RESULTS: There were no differences in segmental retention of either tracer or in mean activity profiles between control subjects and constipated patients. Results in constipated subjects were significantly different from those in controls. The mean half-clearance times of tracer for control subjects were 28.8 h for 67Ga-citrate and 29.9 h for 111In-DTPA in control subjects and 75.0 h for 67Ga-citrate and 70.8 h for 111In-DTPA in constipated patients. CONCLUSION: Oral 67Ga-citrate can be used as a safe alternative to 111In-DTPA for accurate measurement of segmental colonic transit.  (+info)