alpha1-adrenergic receptor subtypes in human peripheral blood lymphocytes. (1/3334)

We investigated the expression of alpha1-adrenergic receptor subtypes in intact human peripheral blood lymphocytes using reverse transcription-polymerase chain reaction (RT-PCR) and radioligand binding assay techniques combined with antibodies against the three subtypes of alpha1-adrenergic receptors (alpha1A, alpha1B, and alpha1D). RT-PCR amplified in peripheral blood lymphocytes a 348-bp alpha1A-adrenergic receptor fragment, a 689-bp alpha1B-adrenergic receptor fragment, and a 540-bp alpha1D-adrenergic receptor fragment. Radioligand binding assay with [3H]prazosin as radioligand revealed a high-affinity binding with a dissociation constant value of 0. 65+/-0.05 nmol/L and a maximum density of binding sites of 175. 3+/-20.5 fmol/10(6) cells. The pharmacological profile of [3H]prazosin binding to human peripheral blood lymphocytes was consistent with the labeling of alpha1-adrenergic receptors. Antibodies against alpha1A-, alpha1B-, and alpha1D-receptor subtypes decreased [3H]prazosin binding to a different extent. This indicates that human peripheral blood lymphocytes express the three alpha1-adrenergic receptor subtypes. Of the three different alpha1-adrenergic receptor subtypes, the alpha1B is the most represented and the alpha1D, the least. Future studies should clarify the functional relevance of alpha1-adrenergic receptors expressed by peripheral blood lymphocytes. The identification of these sites may represent a step for evaluating whether they represent a marker of alpha1-adrenergic receptors in cardiovascular disorders or for assessing responses to drug treatment on these receptors.  (+info)

Kinetic analysis of drug-receptor interactions of long-acting beta2 sympathomimetics in isolated receptor membranes: evidence against prolonged effects of salmeterol and formoterol on receptor-coupled adenylyl cyclase. (2/3334)

The long-acting beta2 sympathomimetics salmeterol and formoterol have been presumed to exert their prolonged action either by binding to an accessory binding site ("exo-site") near the beta2 adrenoceptor or by their high affinity for beta2 adrenoceptors and correspondingly slow dissociation. Whereas most studies with salmeterol had been done in intact tissues, which have slow diffusion and compartmentation of drugs in lipophilic phases, that restrict drug access to the receptor biophase, we used purified receptor membranes from rat lung and disaggregated calf tracheal myocytes as model systems. Binding experiments were designed to measure the slow dissociation of agonists by means of delayed association of (-)-[125I]iodopindolol. Rat lung membranes were pretreated with high concentrations of agonists (salmeterol, formoterol, isoprenaline) before dissociation was induced by 50-fold dilution. Half-times of association of (-)-[125I]iodopindolol remained unchanged compared with untreated controls, indicating that dissociation of agonists occurred in less than 2 min. Adenylyl cyclase experiments were designed to determine the on and off kinetics of agonists to beta2 adrenoceptors by measuring the rate of receptor-induced cyclic AMP (cAMP) formation. Experiments were performed in tracheal membranes characterized by high Vmax values of cAMP formation. Adenylyl cyclase activation occurred simultaneously with the addition of the agonist, continued linearly with time for 60 min, and ceased immediately after the antagonist was added. Similarly, when receptor membranes were preincubated in a small volume with high salmeterol concentrations, there was a linear increase in cAMP formation, which was immediately interrupted by a 100-fold dilution of the reaction mixture. This militates against the exo-site hypothesis. On the other hand, dissociation by dilution was much less when membranes were preincubated with a large volume of salmeterol at the same concentration, indicating that physicochemical effects, and not exo-site binding, underlie its prolonged mode of action.  (+info)

Differential addressing of 5-HT1A and 5-HT1B receptors in epithelial cells and neurons. (3/3334)

The 5-HT1A and 5-HT1B serotonin receptors are expressed in a variety of neurons in the central nervous system. While the 5-HT1A receptor is found on somas and dendrites, the 5-HT1B receptor has been suggested to be localized predominantly on axon terminals. To study the intracellular addressing of these receptors, we have used in vitro systems including Madin-Darby canine kidney (MDCK II) epithelial cells and primary neuronal cultures. Furthermore, we have extended these studies to examine addressing in vivo in transgenic mice. In epithelial cells, 5-HT1A receptors are found on both apical and basolateral membranes while 5-HT1B receptors are found exclusively in intracellular vesicles. In hippocampal neuronal cultures, 5-HT1A receptors are expressed on somatodendritic membranes but are absent from axons. In contrast, 5-HT1B receptors are found on both dendritic and axonal membranes, including growth cones where they accumulate. Using 5-HT1A and 5-HT1B knockout mice and the binary tTA/tetO system, we generated mice expressing these receptors in striatal neurons. These in vivo experiments demonstrate that, in striatal medium spiny neurons, the 5-HT1A receptor is restricted to the somatodendritic level, while 5-HT1B receptors are shipped exclusively toward axon terminals. Therefore, in all systems we have examined, there is a differential sorting of the 5-HT1A and 5-HT1B receptors. Furthermore, we conclude that our in vivo transgenic system is the only model that reconstitutes proper sorting of these receptors.  (+info)

Interactions of high affinity insulin-like growth factor-binding proteins with the type V transforming growth factor-beta receptor in mink lung epithelial cells. (4/3334)

High affinity insulin-like growth factor-binding proteins (IGFBP-1 to -6) are a family of structurally homologous proteins that induce cellular responses by insulin-like growth factor (IGF)-dependent and -independent mechanisms. The IGFBP-3 receptor, which mediates the IGF-independent growth inhibitory response, has recently been identified as the type V transforming growth factor-beta receptor (TbetaR-V) (Leal, S. M., Liu, Q. L., Huang, S. S., and Huang, J. S. (1997) J. Biol. Chem. 272, 20572-20576). To characterize the interactions of high affinity IGFBPs with TbetaR-V, mink lung epithelial cells (Mv1Lu cells) were incubated with 125I-labeled recombinant human IGFBPs (125I-IGFBP-1 to -6) in the presence of the cross-linking agent disuccinimidyl suberate and analyzed by 5% SDS-polyacrylamide gel electrophoresis and autoradiography. 125I-IGFBP-3, -4, and -5 but not 125I-IGFBP-1, -2, and -6 bound to TbetaR-V as demonstrated by the detection of the approximately 400-kDa 125I-IGFBP.TbetaR-V cross-linked complex in the cell lysates and immunoprecipitates. The analyses of 125I-labeled ligand binding competition and DNA synthesis inhibition revealed that IGFBP-3 was a more potent ligand for TbetaR-V than IGFBP-4 or -5. Most of the high affinity 125I-IGFBPs formed dimers at the cell surface. The cell-surface dimer of 125I-IGFBP-3 preferentially bound to and was cross-linked to TbetaR-V in the presence of disuccinimidyl suberate. IGFBP-3 did not stimulate the cellular phosphorylation of Smad2 and Smad3, key transducers of the transforming growth factor-beta type I/type II receptor (TbetaR-I.TbetaR-II) heterocomplex-mediated signaling. These results suggest that IGFBP-3, -4, and -5 are specific ligands for TbetaR-V, which mediates the growth inhibitory response through a signaling pathway(s) distinct from that mediated by the TbetaR-I and TbetaR-II heterocomplex.  (+info)

Proliferative effects of cholecystokinin in GH3 pituitary cells mediated by CCK2 receptors and potentiated by insulin. (5/3334)

1. Proliferative effects of CCK peptides have been examined in rat anterior pituitary GH3 cells, which express CCK2 receptors. 2. CCK-8s, gastrin(1-17) and its glycine-extended precursor G(1-17)-Gly, previously reported to cause proliferation via putative novel sites on AR4-2J and Swiss 3T3 cells, elicited significant dose dependent increases of similar magnitude in [3H]thymidine incorporation over 3 days in serum-free medium of 39 +/- 10% (P < 0.01, n = 20), 37 +/- 8% (P < 0.01, n = 27) and 41 +/- 6% (P < 0.01, n = 36) respectively. 3. CCK-8s and gastrin potentially stimulated mitogenesis (EC50 values 0.12 nM and 3.0 nM respectively), whilst G-Gly displayed similar efficacy but markedly lower potency. L-365,260 consistently blocked each peptide. The CCK2 receptor affinity of G-Gly in GH3 cells was 1.09 microM (1.01;1.17, n = 6) and 5.53 microM (3.71;5.99, n = 4) in guinea-pig cortex. 4. 1 microM G-Gly weakly stimulated Ca2+ increase, eliciting a 104 +/- 21% increase over basal Ca2+ levels, and was blocked by 1 microM L-365,260 whilst CCK-8s (100 nM) produced a much larger Ca2+ response (331 +/- 14%). 5. Insulin dose dependently enhanced proliferative effects of CCK-8s with a maximal leftwards shift of the CCK-8s curve at 100 ng ml(-1) (17 nM) (EC50 decreased 500 fold, from 0.1 nM to 0.2 pM; P < 0.0001). 10 microg ml(-1) insulin was supramaximal reducing the EC50 to 5 pM (P = 0.027) whilst 1 ng ml(-1) insulin was ineffective. Insulin weakly displaced [125I]BHCCK binding to GH3 CCK2 receptors (IC50 3.6 microM). 6. Results are consistent with mediation of G-Gly effects via CCK2 receptors in GH3 cells and reinforce the role of CCK2 receptors in control of cell growth. Effects of insulin in enhancing CCK proliferative potency may suggest that CCK2 and insulin receptors converge on common intracellular targets and indicates that mitogenic stimuli are influenced by the combination of extracellular factors present.  (+info)

[3H]-Mesulergine labels 5-HT7 sites in rat brain and guinea-pig ileum but not rat jejunum. (6/3334)

1. The primary aim of this investigation was to determine whether binding sites corresponding to the 5-HT7 receptor could be detected in smooth muscle of the rat jejunum. Binding studies in rat brain (whole brain minus cerebellum) and guinea-pig ileal longitudinal muscle were also undertaken in order to compare the binding characteristics of these tissues. Studies were performed using [3H]-mesulergine, as it has a high affinity for 5-HT7 receptors. 2. In the rat brain and guinea-pig ileum, pKD values for [3H]-mesulergine of 8.0 +/- 0.04 and 7.9 +/- 0.11 (n = 3) and Bmax values of 9.9 +/- 0.3 and 21.5 +/- 4.9 fmol mg(-1) protein were obtained respectively, but no binding was detected in the rat jejunum. [3H]-mesulergine binding in the rat brain and guinea-pig ileum was displaced with the agonists 5-carboxamidotryptamine (5-CT) > 5-hydroxytryptamine (5-HT) > or = 5-methoxytryptamine (5-MeOT) > sumatriptan and the antagonists risperidone > or = LSD > or = metergoline > ritanserin > > pindolol. 3. Despite the lack of [3H]-mesulergine binding in the rat jejunum, functional studies undertaken revealed a biphasic contractile response to 5-HT which was partly blocked by ondansetron (1 microM). The residual response was present in over 50% of tissues studied and was found to be inhibited by risperidone > LSD > metergoline > mesulergine = ritanserin > pindolol, but was unaffected by RS 102221 (3 microM), cinanserin (30 nM), yohimbine (0.1 microM) and GR 113808 (1 microM). In addition, the agonist order of potency was 5-CT > 5-HT > 5-MeOT > sumatriptan. 4. In conclusion, binding studies performed with [3H]-mesulergine were able to detect 5-HT7 sites in rat brain and guinea-pig ileum, but not in rat jejunum, where a functional 5-HT7-like receptor was present.  (+info)

Selective effects of a 4-oxystilbene derivative on wild and mutant neuronal chick alpha7 nicotinic receptor. (7/3334)

1. We assessed the pharmacological activity of triethyl-(beta-4-stilbenoxy-ethyl) ammonium (MG624), a drug that is active on neuronal nicotinic receptors (nicotinic AChR). Experiments on the major nicotinic AChR subtypes present in chick brain, showed that it inhibits the binding of [125I]-alphaBungarotoxin (alphaBgtx) to the alpha7 subtype, and that of [3H]-epibatidine (Epi) to the alpha4beta2 subtype, with Ki values of respectively 106 nM and 84 microM. 2. MG624 also inhibited ACh elicited currents (I(ACh)) in the oocyte-expressed alpha7 and alpha4beta2 chick subtypes with half-inhibitory concentrations (IC50) of respectively 109 nM and 3.2 microM. 3. When tested on muscle-type AChR, it inhibited [125I]-alphaBgtx binding with a Ki of 32 microM and ACh elicited currents (I(ACh)) in the oocyte-expressed alpha1beta1gammadelta chick subtype with an IC50 of 2.9 microM. 4. The interaction of MG624 with the alpha7 subtype was investigated using an alpha7 homomeric mutant receptor with a threonine-for-leucine 247 substitution (L247T alpha7). MG624 did not induce any current in oocytes expressing the wild type alpha7 receptor, but did induce large currents in the oocyte-expressed L247T alpha7 receptor. The MG624 elicited current (I(MG62)) has an EC50 of 0.2 nM and a Hill coefficient nH of 1.9, and is blocked by the nicotinic receptor antagonist methyllycaconitine (MLA). 5. These binding and electrophysiological studies show that MG624 is a potent antagonist of neuronal chick alpha7 nicotinic AChR, and becomes a competitive agonist following the mutation of the highly conserved leucine residue 247 located in the M2 channel domain.  (+info)

Identification of a region of the C-terminal domain involved in short-term desensitization of the prostaglandin EP4 receptor. (8/3334)

1. The prostaglandin EP4 receptor, which couples to stimulation of adenylyl cyclase, undergoes rapid agonist-induced desensitization when expressed in CHO-K1 cells. 2. Truncation of the 488-amino acid receptor at residue 350 removes the carboxy-terminal domain and abolishes desensitization. 3. To further delineate residues involved in desensitization, the receptor was truncated at position 408, 383 or 369. Receptors truncated at position 408 or 383 underwent PGE2-induced desensitization, whereas the receptor truncated at position 369 displayed sustained activity, indicating that the essential residues for desensitization lie between 370 and 383. 4. The six serines in the 14-amino acid segment between residues 370 and 383 were mutated to alanine, retaining the entire C-terminal domain. Desensitization was absent in cells expressing this mutant. 5. The results indicate involvement of serines located between 370 and 382 in rapid desensitization of the EP4 receptor.  (+info)