Gating of transmission in climbing fibre paths to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat. (1/169)

1. Climbing fibre field potentials evoked by low intensity (non-noxious) electrical stimulation of the ipsilateral superficial radial nerve have been recorded in the rostral paramedian lobule (PML) in awake cats. Chronically implanted microwires were used to monitor the responses at eight different C1 and C3 zone sites during quiet rest and during steady walking on a moving belt. The latency and other characteristics of the responses identified them as mediated mainly via the dorsal funiculus-spino-olivocerebellar path (DF-SOCP). 2. At each site, mean size of response (measured as the area under the field, in mV ms) varied systematically during the step cycle without parallel fluctuations in size of the peripheral nerve volley. Largest responses occurred overwhelmingly during the stance phase of the step cycle in the ipsilateral forelimb while smallest responses occurred most frequently during swing. 3. Simultaneous recording from pairs of C1 zone sites located in the anterior lobe (lobule V) and C1 or C3 zone sites in rostral PML revealed markedly different patterns of step-related modulation. 4. The findings shed light on the extent to which the SOCPs projecting to different parts of a given zone can be regarded as functionally uniform and have implications as to their reliability as channels for conveying peripheral signals to the cerebellum during locomotion.  (+info)

Sonographic detection of radial nerve entrapment within a humerus fracture. (2/169)

Radial neuropathy is frequently associated with fracture of the middle third of the humerus owing to the course of the nerve adjacent to the humeral shaft. The prevalence varies from 2 to 18% of humeral fractures. The therapeutic management is still controversial. Some authors recommend initial surgical exploration, whereas others prefer observation and intervention only if the injured nerve failed to recover after a period of more than 4 months. According to the literature, verification of an entrapped radial nerve in a fracture gap requires surgical exploration, but diagnostic tools to verify the existence of a pathologic condition are limited. We describe the sonographic findings of an entrapped radial nerve and review the literature regarding diagnosis and treatment of entrapped radial nerve in cases of humeral fracture.  (+info)

Safety of the limited open technique of bone-transfixing threaded-pin placement for external fixation of distal radial fractures: a cadaver study. (3/169)

OBJECTIVE: To examine the safety of threaded-pin placement for fixation of distal radial fractures using a limited open approach. DESIGN: A cadaver study. METHODS: Four-millimetre Schanz threaded pins were inserted into the radius and 3-mm screw pins into the second metacarpal of 20 cadaver arms. Each threaded pin was inserted in the dorsoradial oblique plane through a limited open, 5- to 10-mm longitudinal incision. Open exploration of the threaded-pin sites was then carried out. OUTCOME MEASURES: Injury to nerves, muscles and tendons and the proximity of these structures to the threaded pins. RESULTS: There were no injuries to the extensor tendons, superficial radial or lateral antebrachial nerves of the forearm, or to the soft tissues overlying the metacarpal. The lateral antebrachial nerve was the closest nerve to the radial pins and a branch of the superficial radial nerve was closest to the metacarpal pins. The superficial radial nerve was not close to the radial pins. CONCLUSION: Limited open threaded-pin fixation of distal radial fractures in the dorsolateral plane appears to be safe.  (+info)

Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input. (4/169)

Tissue injury induces enhanced pain sensation to light touch and punctate stimuli in adjacent, uninjured skin (secondary hyperalgesia). Whereas hyperalgesia to light touch (allodynia) is mediated by A-fibre low-threshold mechanoreceptors, hyperalgesia to punctate stimuli may be mediated by A- or C-fibre nociceptors. To disclose the relative contributions of A- and C-fibres to the hyperalgesia to punctate stimuli, the superficial radial nerve was blocked by pressure at the wrist in nine healthy subjects. Secondary hyperalgesia was induced by intradermal injection of 40 microg capsaicin, and pain sensitivity in adjacent skin was tested with 200 micron diameter probes (35-407 mN). The progress of conduction blockade was monitored by touch, cold, warm and first pain detection and by compound sensory nerve action potential. When A-fibre conduction was blocked completely but C-fibre conduction was fully intact, pricking pain to punctate stimuli was reduced by 75%, but burning pain to capsaicin injection remained unchanged. In normal skin without A-fibre blockade, pain ratings to the punctate probes increased significantly by a factor of two after adjacent capsaicin injection. In contrast, pain ratings to the punctate probes were not increased after capsaicin injection when A-fibre conduction was selectively blocked. However, hyperalgesia to punctate stimuli was detectable immediately after block release, when A-fibre conduction returned to normal. In conclusion, the pricking pain to punctate stimuli is predominantly mediated by A-fibre nociceptors. In secondary hyperalgesia, this pathway is heterosynaptically facilitated by conditioning C-fibre input. Thus, secondary hyperalgesia to punctate stimuli is induced by nociceptive C-fibre discharge but mediated by nociceptive A-fibres.  (+info)

Distribution of presynaptic inhibition on type-identified motoneurones in the extensor carpi radialis pool in man. (5/169)

The question was addressed as to whether the magnitude of Ia presynaptic inhibition might depend on the type of motor unit activated during voluntary contraction in the wrist extensor muscles. For this purpose, we investigated the effects of applying electrical stimulation to the median nerve on the responses of 25 identified motor units to radial nerve stimulation delivered 20 ms after a conditioning stimulation. The reflex responses of the motor units yielded peaks in the post-stimulus time histograms with latencies compatible with monosynaptic activation. Although median nerve stimulation did not affect the motoneurone net excitatory drive assessed from the mean duration of the inter-spike interval, it led to a decrease in the contents of the first two 0.25 ms bins of the peak. This decrease may be consistent with the Ia presynaptic inhibition known to occur under these stimulation conditions. In the trials in which the median nerve was being stimulated, the finding that the response probability of the motor units, even in their monosynaptic components, tended to increase as their force threshold and their macro-potential area increased and as their twitch contraction time decreased suggests that the median nerve stimulation may have altered the efficiency with which the Ia inputs recruited the motoneurones in the pool. These effects were consistently observed in seven pairs of motor units each consisting of one slow and one fast contracting motor unit which were simultaneously tested, which suggests that the magnitude of the Ia presynaptic inhibition may depend on the type of motor unit tested rather than on the motoneurone pool excitatory drive. The present data suggest for the first time that in humans, the Ia presynaptic inhibition may show an upward gradient working from fast to slow contracting motor units which is able to compensate for the downward gradient in monosynaptic reflex excitation from 'slow' to 'fast' motor units. From a functional point of view, a weaker Ia presynaptic inhibition acting on the fast contracting motor units may contribute to improving the proprioceptive assistance to the wrist myotatic unit when the contraction force has to be increased.  (+info)

Abnormal reciprocal inhibition between antagonist muscles in Parkinson's disease. (6/169)

Disynaptic Ia reciprocal inhibition acts, at the spinal level, by actively inhibiting antagonist motor neurons and reducing the inhibition of agonist motor neurons. The deactivation of this pathway in Parkinson's disease is still debated. Disynaptic reciprocal inhibition of H reflexes in the forearm flexor muscles was examined in 15 control subjects and 16 treated parkinsonian patients at rest and at the onset of a voluntary wrist flexion. Two patients were reassessed 18 h after withdrawal of antiparkinsonian medication. At rest, the level of Ia reciprocal inhibition between the wrist antagonist muscles was not significantly different between patients and controls. In contrast, clear abnormalities of this inhibition were revealed by voluntary movements in the patients. In normal subjects, at the onset of a wrist flexion, Ia reciprocal inhibition showed a large decrease, and we argue that this decrease is supraspinal in origin. On the less affected sides of the patients the descending modulation was still present but lower than in controls; on the more affected sides this modulation had vanished almost completely. These movement-induced abnormalities of disynaptic Ia reciprocal inhibition were closely associated with Parkinson's disease but were probably not dependent on L-dopa. They could play a role in the disturbances of precise voluntary movements observed in Parkinson's disease.  (+info)

Cryosurgery for chronic injuries of the cutaneous nerve in the upper limb. Analysis of a new open technique. (7/169)

We have treated six patients with chronic pain following nerve injury using a cryosurgical probe. All had a significant return of hand function and improvement of pain during a mean follow-up of 13.5 months. Open visualisation of the injured nervous tissue is essential for patients undergoing this technique. Four patients regained normal sensation in the dermatome of the previously injured nerve.  (+info)

External fixation of open humerus fractures. (8/169)

Fifteen patients with open shaft of humerus fractures were treated with a monolateral external fixator. Nine patients presented with nerve palsies. Two radial nerves were disrupted and required grafting. Of the seven others, six spontaneously recovered and one brachial plexus partially improved. All fractures healed. The average duration of external fixation was 21 weeks. Four patients required additional procedures prior to healing (external fixator reapplication-2, plating and bone grafting-2). Two of these four experienced breakage of 4.5 mm external fixation pins. Eight patients developed pin tract infections, which all resolved with local care and antibiotics. Thirteen patients were contacted at an average of 63 months after injury. Eleven reported they were satisfied with their result, nine had no functional limits, and eight reported no pain.  (+info)