Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a target glycoprotein in drug-induced thrombocytopenia. (33/618)

Drug-induced immune thrombocytopenia (DITP) is a serious complication of drug treatment. Previous studies demonstrated that most drug-dependent antibodies (DDAbs) react with the platelet membrane glycoprotein (GP) complexes IIb/IIIa and Ib/IX/V. We analyzed the sera from 5 patients who presented with DITP after intake of carbimazole. Notably, thrombocytopenia induced by carbimazole was relatively mild in comparison to patients with DITP induced by quinidine. The sera reacted with platelets in an immunoassay on addition of the drug. In immunoprecipitation experiments with biotin-labeled platelets and endothelial cells, reactivity with the platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) could be demonstrated, whereas neither GPIIb/IIIa nor GPIb/IX was precipitated in the presence of the drug. These results could be confirmed by GP-specific immunoassay (MAIPA) using monoclonal antibodies (mabs) against PECAM-1. In addition, the binding of DDAbs could be abolished by preincubation with soluble recombinant PECAM-1. Carbimazole-dependent antibodies showed similar reactivity with platelets carrying the Leu(125) and Val(125) PECAM-1 isoforms, indicating that this polymorphic structure, which is located in the first extracellular domain, is not responsible for the epitope formation. Binding studies with biotin-labeled mutants of PECAM-1 and analysis of sera with mabs against different epitopes on PECAM-1 in MAIPA assay suggested that carbimazole-dependent antibodies prominently bound to the second immunoglobulin homology domain of the molecule. Analysis of 20 sera from patients with quinidine-induced thrombocytopenia by MAIPA assay revealed evidence that DDAbs against PECAM-1 are involved in addition to anti-GPIb/IX and anti-GPIIb/IIIa. We conclude that PECAM-1 is an important target GP in DITP. (Blood. 2000;96:1409-1414)  (+info)

CYP1A2 and CYP2D6 4-hydroxylate propranolol and both reactions exhibit racial differences. (34/618)

We have previously shown racial differences in propranolol kinetics, with the largest differences appearing to be in its 4-hydroxylation. The purpose of this study was to identify and confirm the cytochrome P450 enzymes (CYP) with propranolol 4-hydroxylase activity, describe their enzyme kinetics, and determine whether there were racial differences in their catalytic activity. Eleven human recombinant, expressed CYPs were screened, but only CYP1A2 and CYP2D6 possessed propranolol 4-hydroxylase activity. Subsequent studies were conducted in human liver microsomes, including correlation, inhibition, enzyme kinetics, and racial comparison studies. Significant correlations were noted between propranolol 4-hydroxylation and ethoxyresorufin-O-deethylation (marker of CYP1A2 activity), with marked improvement in the correlations when CYP2D6-mediated propranolol 4-hydroxylation was inhibited with quinidine. Inhibition studies showed that quinidine inhibited approximately 55% of propranolol 4-hydroxylation and furaphylline (CYP1A2-selective inhibitor) inhibited about 45% of propranolol 4-hydroxylation. Median (range) parameter estimates of (S)-4-hydroxypropranolol [(S)-HOP] formation were a V(max) value of 307 (165-2397) and 721 (84-1975) pmol/mg of protein/60 min for CYP1A2 and CYP2D6, respectively, and a K(m) value of 21.2 (8.9-77.5) and 8.5 (5.9-31.9) microM for CYP1A2 and CYP2D6, respectively. CYP1A2- and CYP2D6-mediated propranolol 4-hydroxylation was about 70 and 100% higher (P <.05 for both), respectively, in African-Americans compared with Caucasians. In summary, we found that both CYP1A2 and CYP2D6 catalyze formation of 4-hydroxypropranolol and that both enzymes exhibited racial differences in this reaction. The observed racial differences in drug metabolism may have relevance to drug efficacy, toxicity, or carcinogen activation for CYP1A2 or CYP2D6 substrates.  (+info)

Cytochrome P450 3A4-mediated interaction of diclofenac and quinidine. (35/618)

The metabolism of diclofenac to its 5-hydroxylated derivative in humans is catalyzed by cytochrome P450 (CYP)3A4. We report herein that in vitro this biotransformation pathway is stimulated by quinidine. When diclofenac was incubated with human liver microsomes in the presence of quinidine, the formation of 5-hydroxydiclofenac increased approximately 6-fold relative to controls. Similar phenomena were observed with diastereoisomers of quinidine, including quinine and the threo epimers, which produced an enhancement in the formation of 5-hydroxydiclofenac in the order of 6- to 9-fold. This stimulation of diclofenac metabolism was diminished when human liver microsomes were pretreated with a monoclonal inhibitory antibody against CYP3A4. In contrast, neither cytochrome b(5) nor CYP oxidoreductase appeared to mediate the stimulation of diclofenac metabolism by quinidine, suggesting that the effect of quinidine is mediated through CYP3A4 protein. Further kinetic analyses indicated that V(max) values for the conversion of diclofenac to its 5-hydroxy derivative increased 4.5-fold from 13.2 to 57.6 nmol/min/nmol of CYP with little change in K(m) (71-56 microM) over a quinidine concentration range of 0 to 30 microM. Conversely, the metabolism of quinidine was not affected by the presence of diclofenac; the K(m) value estimated for the formation of 3-hydroxyquinidine was approximately 1.5 microM, similar to the quinidine concentration required to produce 50% of the maximum stimulatory effect on diclofenac metabolism. It appears that the enhancement of diclofenac metabolism does not interfere with quinidine's access to the ferriheme-oxygen complex, implicating the presence of both compounds in the active site of CYP3A4 at the same time. Finally, a approximately 4-fold increase in 5-hydroxydiclofenac formation was observed in human hepatocyte suspensions containing diclofenac and quinidine, demonstrating that this type of drug-drug interaction occurs in intact cells.  (+info)

Metabolism of ezlopitant, a nonpeptidic substance P receptor antagonist, in liver microsomes: enzyme kinetics, cytochrome P450 isoform identity, and in vitro-in vivo correlation. (36/618)

The enzyme kinetics of the metabolism of ezlopitant in liver microsomes from various species have been determined. The rank order of the species with regard to the in vitro intrinsic clearance of ezlopitant was monkey >> guinea pig > rat >> dog > human. CJ-12,764, a benzyl alcohol analog, was observed as a major metabolite, and a dehydrogenated metabolite (CJ-12,458) was equally important in human liver microsomes. Scale-up of the liver microsomal intrinsic clearance data and correcting for both serum protein binding and nonspecific microsomal binding yielded predicted hepatic clearance values that showed a good correlation with in vivo systemic blood clearance values. Including microsomal binding was necessary to achieve agreement between hepatic clearance values predicted from in vitro data and systemic clearance values measured in vivo. Cytochrome P450 (CYP) 3A4, 3A5, and 2D6 demonstrated the ability to metabolize ezlopitant to CJ-12,458 and CJ-12,764. However, in liver microsomes, the CYP3A isoforms appear to play a substantially more important role in the metabolism of ezlopitant than CYP2D6, as assessed through the use of CYP-specific inhibitors, correlation to isoform-specific marker substrate activities, and appropriate scale-up of enzyme kinetic data generated in microsomes containing individual heterologously expressed recombinant CYP isoforms. The apparent predominance of CYP3A over CYP2D6 is consistent with observations of the pharmacokinetics of ezlopitant in humans in vivo.  (+info)

Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A. (37/618)

Stereoselective metabolism of cibenzoline succinate, an oral antiarrhythmic drug, was investigated on hepatic microsomes from humans and rats and microsomes from cells expressing human cytochrome P450s (CYPs). Four main metabolites, M1 (p-hydroxycibenzoline), M2 (4,5-dehydrocibenzoline), and unknown metabolites M3 and M4, were formed by human and rat liver microsomes. The intrinsic clearance (CL(int)) of the M1 formation from R(+)-cibenzoline was 23-fold greater than that of S(-)-cibenzoline in human liver microsomes, whereas the R(+)/S(-)-enantiomer ratio of CL(int) for M2, M3, and M4 formation was 0.39 to 0.83. The total CL(int) for the formation of the four main metabolites from S(-)- and R(+)-cibenzoline was 1.47 and 1.64 microl/min/mg, respectively, suggesting that the total CL(int) in R(+)-enantiomer was slightly greater than that in S(-)-enantiomer in human liver microsomes. The M1 formation from R(+)-cibenzoline was highly correlated with bufuralol 1'-hydroxylation and CYP2D6 content and was inhibited by quinidine, a potent inhibitor of CYP2D6. Additionally, only microsomes containing recombinant CYP2D6 were capable of M1 formation. These results suggest that the M1 formation from R(+)-cibenzoline was catalyzed by CYP2D6. The formation of M2, M3, and M4 from S(-)- and R(+)-cibenzoline was highly correlated with testosterone 6beta-hydroxylation and CYP3A4 content. Ketoconazole, which is a potent inhibitor of CYP3A4/5, had a strong inhibitory effect on their formation, and the M4 formation from R(+)-cibenzoline was inhibited by quinidine by 45%. The formation of M2 was also inhibited by quinidine by 46 to 52% at lower cibenzoline enantiomers (5 microM), whereas the inhibition by quinidine was not observed at a higher substrate concentration (100 microM). In male rat liver microsomes, ketoconazole and quinidine inhibited the formation of the main metabolites, M1 and M3, >74% and 44 to 59%, respectively. These results provide evidence that CYP3A and CYP2D play a major role in the stereoselective metabolism of cibenzoline in humans and male rats.  (+info)

Antazoline therapy of recurrent refractory supraventricular arrhythmias--a preliminary report. (38/618)

Seven patients with chronic or recurrent supraventricular tachyarrhythmias were selected for a trial of antazoline therapy because sinus rhythm or a controlled ventricular response could not be achieved with quinidine, procainamide, digitalis or propranolol. Sinus rhythm was established by either intravenous administration of antazoline or direct-current countershock, and has been maintained in all for 4 to 16 months by oral administration of antazoline. Side effects were minor. Antazoline is a sufficiently promising antiarrhythmic agent to warrant large-scale controlled studies.  (+info)

Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. (39/618)

The metabolism of the antidepressant mirtazapine (MIR) was investigated in vitro using human liver microsomes (HLM) and recombinant enzymes. Mean K(m) values (+/-S.D., n = 4) were 136 (+/-44) microM for MIR-hydroxylation, 242 (+/-34) microM for N-demethylation, and 570 (+/-281) microM for N-oxidation in HLM. Based on the K(m) and V(max) values, MIR-8-hydroxylation, N-demethylation, and N-oxidation contributed 55, 35, and 10%, respectively, to MIR biotransformation in HLM at an anticipated in vivo liver MIR concentration of 2 microM. Recombinant CYP predicted a 65% contribution of CYP2D6 to MIR-hydroxylation at 2 microM MIR, decreasing to 20% at 250 microM. CYP1A2 contribution increased correspondingly from 30 to 50%. In HLM, quinidine and alpha-naphthoflavone reduced MIR-hydroxylation to 75 and 45% of control, respectively, at 250 microM MIR. A >50% contribution of CYP3A4 to MIR-N-demethylation at <1 microM MIR was indicated by recombinant enzymes. In HLM, ketoconazole (1 microM) reduced N-desmethylmirtazapine formation rates to 60% of control at 250 microM. Twenty percent of MIR-N-oxidation was accounted for by CYP3A4 at 2 microM MIR, increasing to 85% at 250 microM, while CYP1A2 contribution decreased from 80 to 15%. Ketoconazole reduced MIR-N-oxidation to 50% of control at 250 microM. MIR did not substantially inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP1E2, and CYP3A4 activity in vitro. Induction/inhibition or genetic polymorphisms of CYP2D6, CYP1A2, and CYP3A4 may affect MIR metabolism, but involvement of several enzymes in different metabolic pathways may prevent large alterations in in vivo drug clearance.  (+info)

(R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. (40/618)

Fluoxetine is one of the most widely prescribed selective serotonin reuptake inhibitors (SSRIs) that is marketed worldwide. However, details of its human hepatic metabolism have been speculative and incomplete, possibly due to the sensitivity of analytical techniques and selectivity of specific in vitro probes and reagents used. Studies with (R)-, (S)-, and racemic fluoxetine were undertaken to determine the stereospecific nature of its metabolism and estimate intrinsic clearance contributions of each CYP for fluoxetine N-demethylation. Measurable fluoxetine N-demethylase activity was catalyzed by CYP1A2, -2B6, -2C9, -2C19, -2D6, -3A4, and -3A5. All enzymes catalyzed this reaction for both enantiomers and the racemate, and intrinsic clearance values were similar for the enantiomers for all CYP enzymes except CYP2C9, which demonstrated stereoselectivity for R- over the S-enantiomer. Scaling the intrinsic clearance values for the individual CYP enzymes to estimate contributions of each in human liver microsomes suggested that CYP2D6, CYP2C9, and CYP3A4 contribute the greatest amount of fluoxetine N-demethylation in human liver microsomes. These data were corroborated with the examination of the effects of CYP-specific inhibitors quinidine (CYP2D6), sulfaphenazole (CYP2C9), and ketoconazole (CYP3A4) on fluoxetine N-demethylation in pooled human liver microsomes. Together, these findings suggest a significant role for the polymorphically expressed CYP2D6 in fluoxetine clearance and are consistent with reports on the clinical pharmacokinetics of fluoxetine.  (+info)