Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. (17/618)

BACKGROUND: The Brugada syndrome is characterized by marked ST-segment elevation in the right precordial ECG leads and is associated with a high incidence of sudden and unexpected arrhythmic death. Our study examines the cellular basis for this syndrome. METHODS AND RESULTS: Using arterially perfused wedges of canine right ventricle (RV), we simultaneously recorded transmembrane action potentials from 2 epicardial and 1 endocardial sites, together with unipolar electrograms and a transmural ECG. Loss of the action potential dome in epicardium but not endocardium after exposure to pinacidil (2 to 5 micromol/L), a K(+) channel opener, or the combination of a Na(+) channel blocker (flecainide, 7 micromol/L) and acetylcholine (ACh, 2 to 3 micromol/L) resulted in an abbreviation of epicardial response and a transmural dispersion of repolarization, which caused an ST-segment elevation in the ECG. ACh facilitated loss of the action potential dome, whereas isoproterenol (0.1 to 1 micromol/L) restored the epicardial dome, thus reducing or eliminating the ST-segment elevation. Heterogeneous loss of the dome caused a marked dispersion of repolarization within the epicardium and transmurally, thus giving rise to phase 2 reentrant extrasystole, which precipitated ventricular tachycardia (VT) and ventricular fibrillation (VF). Transient outward current (I(to)) block with 4-aminopyridine (1 to 2 mmol/L) or quinidine (5 micromol/L) restored the dome, normalized the ST segment, and prevented VT/VF. Conclusions-Depression or loss of the action potential dome in RV epicardium creates a transmural voltage gradient that may be responsible for the ST-segment elevation observed in the Brugada syndrome and other syndromes exhibiting similar ECG manifestations. Our results also demonstrate that extrasystolic activity due to phase 2 reentry can arise in the intact wall of the canine RV and serve as the trigger for VT/VF. Our data point to I(to) block (4-aminopyridine, quinidine) as an effective pharmacological treatment.  (+info)

Characterization of Mg(2+) efflux from rat erythrocytes non-loaded with Mg(2+). (18/618)

Non-Mg(2+)-loaded rat erythrocytes with a physiological level of Mg(2+)(i) exhibited Mg(2+) efflux when incubated in nominally Mg(2+)-free media. Two types of Mg(2+) efflux were shown: (1) An Na(+)-dependent Mg(2+) efflux in NaCl and Na gluconate medium, which was inhibited by amiloride and quinidine, as was Na(2+)/Mg(2+) antiport in Mg(2+)-loaded rat erythrocytes; and (2) an Na(+)-independent Mg(2+) efflux in sucrose medium and choline Cl medium, which may be differentiated into SITS-sensitive Mg(2+) efflux at low Cl(-)(o) (in sucrose) and into SITS-insensitive Mg(2+) efflux at high Cl(-)(o) (in 150 mmol/l choline Cl).  (+info)

Mg(2+) transport in sheep rumen epithelium: evidence for an electrodiffusive uptake mechanism. (19/618)

The potential difference (PD)-dependent component of transcellular Mg(2+) uptake in sheep rumen epithelium was studied. Unidirectional (28)Mg(2+) fluxes were measured at various transepithelial PD values, and the unidirectional mucosal-to-serosal (28)Mg(2+) flux (J(Mg)(ms)) was correlated with the PD across the apical membrane (PD(a)) determined by mucosal impalement with microelectrodes. PD(a) was found to be -54 +/- 5 mV, and J(Mg)(ms) was 65.9 +/- 13.8 nmol. cm(-2). h(-1) under short-circuit conditions. Hyperpolarization of the ruminal epithelium (blood-side positive) depolarized PD(a) and, most noticeably, decreased J(Mg)(ms). Further experiments were performed with cultured ruminal epithelial cells (REC). With the aid of the fluorescence probe mag-fura 2, we measured the intracellular free Mg(2+) concentration ([Mg(2+)](i)) of isolated REC under basal conditions at various extracellular Mg(2+) concentrations ([Mg(2+)](e)) and after alterations of the transmembrane voltage. Basal [Mg(2+)](i) was 0.54 +/- 0.08 mM. REC suspended in media with [Mg(2+)](e) between 0.5 and 7.5 mM showed an increase in [Mg(2+)](i) that was dependent on [Mg(2+)](e) and that exhibited a saturable component (Michaelis-Menten constant = 1.2 mM; maximum [Mg(2+)](i) = 1.26 mM). Membrane depolarization with high extracellular K(+) (40, 80, or 140 mM K(+)) and the K(+) channel blocker quinidine (50 and 100 microM ) resulted in a decrease in [Mg(2+)](i). On the other hand, hyperpolarization created by K(+) diffusion (intracellular K(+) concentration > extracellular K(+) concentration) in the presence of valinomycin induced a 15% increase in [Mg(2+)](i). None of the manipulations had any effect on intracellular Ca(2+) concentration and intracellular pH. The results support the assumption that the membrane potential acts as a principal driving force for Mg(2+) entry in REC and suggest that the pathway for this electrodiffusive Mg(2+) uptake across the luminal membrane is a channel or a carrier.  (+info)

Interaction of diclofenac and quinidine in monkeys: stimulation of diclofenac metabolism. (20/618)

The cytochrome P-450 (CYP)3A4-mediated metabolism of diclofenac is stimulated in vitro by quinidine. A similar effect is observed in incubations with monkey liver microsomes. We describe an in vivo interaction of diclofenac and quinidine that leads to enhanced clearance of diclofenac in monkeys. After a dose of diclofenac via portal vein infusion at 0.055 mg/kg/h, steady-state systemic plasma drug concentrations in three male rhesus monkeys were 87, 104, and 32 ng/ml, respectively (control). When diclofenac was coadministered with quinidine (0.25 mg/kg/h) via the same route, the corresponding plasma diclofenac concentrations were 50, 59, and 18 ng/ml, representing 57, 56, and 56% of control values, respectively. In contrast, steady-state systemic diclofenac concentrations in the same three monkeys were elevated 1.4 to 2.5 times when the monkeys were pretreated with L-754,394 (10 mg/kg i.v.), an inhibitor of CYP3A. Further investigation indicated that the plasma protein binding (>99%) and blood/plasma ratio (0.7) of diclofenac remained unchanged in the presence of quinidine. Therefore, the decreases in plasma concentrations of diclofenac after a combined dose of diclofenac and quinidine are taken to reflect increased hepatic clearance of the drug, presumably resulting from the stimulation of CYP3A-catalyzed oxidative metabolism. Consistent with this proposed mechanism, a 2-fold increase in the formation of 5-hydroxydiclofenac derivatives was observed in monkey hepatocyte suspensions containing diclofenac and quinidine. Stimulation of diclofenac metabolism by quinidine was diminished when monkey liver microsomes were pretreated with antibodies against CYP3A. Subsequent kinetic studies indicated that the K(m) value for the CYP-mediated conversion of diclofenac to its 5-hydroxy derivatives was little changed (75 versus 59 microM), whereas V(max) increased 2.5-fold in the presence of quinidine. These data suggest that the catalytic capacity of monkey hepatic CYP3A toward diclofenac metabolism is enhanced by quinidine.  (+info)

Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine. (21/618)

AIMS: In vitro studies suggest that the oxidation of quinidine to 3-hydroxyquinidine is a specific marker reaction for CYP3A4 activity. To assess the possible use of this reaction as an in vivo marker of CYP3A4 activity, we studied the involvement of cytochromes CYP2C9, CYP2E1 and CYP3A4 in the in vivo oxidative metabolism of quinidine. METHODS: An open study of 30 healthy young male volunteers was performed. The pharmacokinetics of a 200 mg single oral dose of quinidine was studied before and during daily administration of 100 mg diclofenac, a CYP2C9 substrate (n=6); 200 mg disulfiram, an inhibitor of CYP2E1 (n=6); 100 mg itraconazole, an inhibitor of CYP3A4 (n=6); 250 ml single strength grapefruit juice twice daily, an inhibitor of CYP3A4 (n=6); 250 mg of erythromycin 4 times daily, an inhibitor of CYP3A4 (n=6). Probes of other enzyme activities, caffeine (CYP1A2), sparteine (CYP2D6), mephenytoin (CYP2C19), tolbutamide (CYP2C9) and cortisol (CYP3A4) were also studied. RESULTS: Concomitant administration of diclofenac reduced the partial clearance of quinidine by N-oxidation by 27%, while no effect was found for other pharmacokinetic parameters of quinidine. Concomitant administration of disulfiram did not alter any of the pharmacokinetic parameters of quinidine. Concomitant administration of itraconazole reduced quinidine total clearance, partial clearance by 3-hydroxylation and partial clearance by N-oxidation by 61, 84 and 73%, respectively. The renal clearance was reduced by 60% and the elimination half-life increased by 35%. Concomitant administration of grapefruit juice reduced the total clearance of quinidine and its partial clearance by 3-hydroxylation and N-oxidation by 15, 19 and 27%, respectively. The elimination half-life of quinidine was increased by 19%. The caffeine metabolic index was reduced by 25%. Concomitant administration of erythromycin reduced the total clearance of quinidine and its partial clearance by 3-hydroxylation and N-oxidation by 34, 50 and 33%, respectively. Cmax was increased by 39%. CONCLUSIONS: The results confirm an important role for CYP3A4 in the oxidation of quinidine in vivo, and this applies particularly to the formation of 3-hydroxyquinidine. While a minor contribution of CYP2C9 to the N-oxidation of quinidine is possible, a major involvement of the CYP2C9 or CYP2E1 enzymes in the oxidation of quinidine in vivo is unlikely.  (+info)

Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6. (22/618)

Homology models of cytochrome P450 2D6 (CYP2D6) have identified serine 304 as an active-site residue and implicated a putative role for this residue in substrate enantioselectivity and the differential inhibition of enzyme activity by the diastereoisomers quinine and quinidine. The role of serine 304 in selectivity is thought to be achieved through a preferential hydrogen-bond interaction between the hydroxyl group of the residue and one of the stereoisomers of each ligand. We have tested this hypothesis by substituting serine 304 with alanine, a non-hydrogen-bonding residue, and compared the properties of the wild-type and mutant enzymes in microsomes prepared from yeast cells expressing the appropriate cDNA-derived enzyme. The Ser(304)Ala substitution did not alter the enantioselective oxidation of metoprolol; the O-demethylation reaction remained R-(+)-enantioselective (wild-type, R/S, 1.7; mutant, R/S, 1.6), whereas alpha-hydroxylation remained S-(-)-enantioselective (wild-type and mutant, R/S, 0.7). Similarly, the selective oxidation of the R-(+) and S-(-) enantiomers of propranolol to the major 4-hydroxy metabolite was identical with both wild-type and mutant forms of the enzyme (R/S 0.9), although the formation of minor metabolites (5-hydroxy and deisopropylpropranolol) did show some slight alteration in enantioselectivity. The differential inhibition of enzyme activity by quinine and quinidine was also identical with both forms of CYP2D6, the IC(50) values for each enzyme being approx. 10 microM and 0.1 microM for quinine and quinidine, respectively. The kinetics of formation of alpha-hydroxymetoprolol and 4-hydroxydebrisoquine by wild-type and the Ser(304)Ala mutant was also very similar. However, modest changes in the regioselective oxidation of metoprolol and debrisoquine were observed with the Ser(304)Ala mutant. The regio- and enantioselective oxidation of an analogue of metoprolol, in which the hydroxyl group attached to the chiral carbon was replaced by a methyl moiety, was again identical with both wild-type and Ser(304)Ala mutant. However, the observed selectivity was the reverse of that observed with metoprolol. Collectively, these data indicate that Ser(304) is unlikely to be a key ligand-binding residue, although the residue may indeed be located in the active-site cavity. The reversal of selectivity with the methyl analogue of metoprolol indicates that the hydroxyl group attached to the chiral centre of ligands, such as metoprolol, is important in defining the enzyme's selective properties, and that a hydrogen-bonding residue, other than Ser(304), may be involved in this interaction. Current homology models of the active site of CYP2D6 that predict a hydrogen-bond interaction between Ser(304) and specific ligands will need to be re-evaluated, and other candidate residues capable of such an interaction nominated and tested by site-directed mutagenesis studies.  (+info)

Molecular determinant of high-affinity dofetilide binding to HERG1 expressed in Xenopus oocytes: involvement of S6 sites. (23/618)

This study reports that the affinity of HERG1 A for dofetilide is decreased from 0.125 +/- 0.003 microM for wild-type (WT) channels to 15 +/- 3 microM for F656V, a mutation in the COOH-terminal half of the S6. Similarly, the IC(50) for quinidine was increased from 8 +/- 4 microM for WT to 219 +/- 65 microM for the F656V mutation, whereas affinity for external tetraethylammonium was similar for WT (51 +/- 10 mM) and F656V (36 +/- 10 mM, NS). Kinetics of onset of inactivation of F656V was similar to WT but kinetics of deactivation, activation, and recovery from inactivation differed from WT. However, mutations in nearby amino acids in the S6 more strikingly altered deactivation, activation, and recovery from inactivation but had little effect on affinity for dofetilide. To assess the effects of disruption of inactivation, the S631A mutation was made. The S631A mutation altered the IC(50) for dofetilide to 20 +/- 3 microM, but the IC(50) for quinidine was unchanged at 8 +/- 4 microM for WT and 10 +/- 1 microM for S631A. To address whether the F656V mutation alters the IC(50) for dofetilide in a channel that does not inactivate, the double mutation S631A/F656V was made. The IC(50) for dofetilide of the double mutation was 32 +/- 3 microM, which is not substantially different than that of S631A. These data support the notion that allosteric changes occurring during the process of inactivation are necessary for high-affinity dofetilide binding. In conclusion, the Phe-656 residue of HERG is a molecular determinant of high-affinity dofetilide binding.  (+info)

Inhibition of debrisoquine hydroxylation with quinidine in subjects with three or more functional CYP2D6 genes. (24/618)

AIMS: To study whether the CYP2D6 capacity in ultrarapid metabolizers of debrisoquine due to duplication/multiduplication of a functional CYP2D6 gene, can be 'normalised' by low doses of the CYP2D6 inhibitor quinidine and whether this is dose-dependent. METHODS: Five ultrarapid metabolizers of debrisoquine with 3, 4 or 13 functional CYP2D6 genes were given single oral doses of 5, 10, 20, 40, 80 and 160 mg quinidine. Four hours after quinidine intake, 10 mg debrisoquine was given. Urine was collected for 6 h after debrisoquine administration. Debrisoquine and its 4-hydroxymetabolite were analysed by h.p.l.c. and the debrisoquine metabolic ratio (MR) was calculated. RESULTS: Without quinidine the MR in the ultrarapid metabolizers ranged between 0.01 and 0.07. A dose-effect relationship could be established for quinidine with regard to the inhibitory effect on CYP2D6 activity. To reach an MR of 1-2, subjects with 3 or 4 functional genes required a quinidine dose of about 40 mg, while the sister and brother with 13 functional genes required about 80 mg quinidine. After 160 mg quinidine, the MRs, in the subjects with 3, 3, 4, 13 and 13 functional genes, were 12.6, 10.1, 9.2, 2.4 and 2.2, respectively. CONCLUSIONS: A dose-effect relationship could be established for quinidine inhibition of CYP2D6 in ultrarapid metabolizers. The clinical use of low doses of quinidine as an inhibitor of CYP2D6 might be considered in ultrarapid metabolizers taking CYP2D6 metabolized drugs rather than giving increased doses of the drug. Normalizing the metabolic capacity of CYP2D6, by giving a low dose of quinidine, may solve the problem of 'treatment resistance' caused by ultrarapid metabolism.  (+info)