Vasorelaxing action of rutaecarpine: effects of rutaecarpine on calcium channel activities in vascular endothelial and smooth muscle cells. (9/3696)

Rutaecarpine (Rut) has been shown to induce hypotension and vasorelaxation. In vitro studies indicated that the vasorelaxant effect of Rut was largely endothelium-dependent. We previously reported that Rut increased intracellular Ca2+ concentrations ([Ca2+]i) in cultured rat endothelial cells (ECs) and decreased [Ca2+]i in cultured rat vascular smooth muscle (VSMCs) cells. The present results showed that the hypotensive effect of Rut (10-100 microgram/kg i.v.) was significantly blocked by the nitric oxide synthase inhibitor Nomega-nitro-L-arginine. In aortic rings, Rut (0. 1-3.0 microM)-induced vasorelaxation was inhibited by Nomega-nitro-L-arginine and hydroquinone but not by antagonists of the various K+ channels, 4-aminopyridine, apamin, charybdotoxin, or glibenclamide. Rut (0.1 and 1.0 microM) inhibited the norepinephrine-induced contraction generated by Ca2+ influx and at 1.0 microM increased cyclic GMP (cGMP) production in endothelium-intact rings and to a lesser extent in endothelium-denuded rings. In whole-cell patch-clamp recording, nonvoltage-dependent Ca2+ channels were recorded in ECs and Rut (0.1, 1.0 microM) elicited an opening of such channels. However, in VSMCs, Rut (10.0 microM) inhibited significantly the L-type voltage-dependent Ca2+ channels. In ECs cells, Rut (1.0, 10.0 microM) increased nitric oxide release in a Ca2+-dependent manner. Taken together, the results suggested that Rut lowered blood pressure by mainly activating the endothelial Ca2+-nitric oxide-cGMP pathway to reduce smooth muscle tone. Although the contribution seemed to be minor in nature, inhibition of contractile response in VSMCs, as evidenced by inhibition of Ca2+ currents, was also involved. Potassium channels, on the other hand, had no apparent roles.  (+info)

Catecholamines participate in the induction of ornithine decarboxylase gene expression in normal and hyperplastic mouse kidney. (10/3696)

In the quinazoline antifolate (CB 3717)-induced hyperplastic kidney model, a remarkable increase of ornithine decarboxylase (ODC) activity was paralleled by a smaller, but highly significant augmentation of the ODC transcript level. Catecholamine depletion, evoked by reserpine, strongly impaired antifolate-induced ODC expression; the enzyme activity was almost completely abolished while the mRNA level decreased by 60%. Moreover, under conditions of a depleted catecholamine pool, kidney enlargement was significantly reduced confirming our earlier reports on the indispensability of ODC induction for renal hyperplasia (M. Manteuffel-Cymborowska et al. , Biochim. Biophys. Acta, 1182 (1993) 133-141[1]). In normal mouse kidney catecholamines appeared to be inducers of ODC expression. Use of selective agonists of catecholamine receptors demonstrated the importance of dopamine D2 receptors, and to a lower extent beta adrenoreceptors, in the catecholamine mediation of induction of ODC activity and of ODC mRNA levels. These increases were not abolished by an antiandrogen, casodex, suggesting that catecholamine control of ODC expression is an androgen receptor-independent process. The results obtained point to the critical role of renal catecholamines; these biogenic amines are not only involved in the regulation of ODC expression in normal kidney but are also required for the induction of ODC in hyperplastic kidney evoked by antifolate and, as shown recently (M. Manteuffel-Cymborowska et al., Biochim. Biophys. Acta, 1356 (1997) 292-298[2]), in testosterone-induced hypertrophic kidney.  (+info)

Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. (11/3696)

Transfection of multidrug resistance proteins (MRPs) MRP1 and MRP2 in human ovarian carcinoma 2008 cells conferred a marked level of resistance to short-term (1-4 h) exposure to the polyglutamatable antifolates methotrexate (MTX; 21-74-fold), ZD1694 (4-138-fold), and GW1843 (101-156-fold). Evidence for MRP-mediated antifolate efflux relies upon the following findings: (a) a 2-3.3-fold lower accumulation of [3H]MTX and subsequent reduced formation of long-chain polyglutamate forms of MTX; (b) reversal of MTX resistance by probenecid in both transfectants, and (c) ATP-dependent uptake of [3H]MTX in inside-out vesicles of MRP1 and MRP2 transfectants. This report provides a mechanistic basis for resistance to polyglutamatable antifolates through an MRP-mediated drug extrusion.  (+info)

Differential involvement of Galpha12 and Galpha13 in receptor-mediated stress fiber formation. (12/3696)

The ubiquitously expressed heterotrimeric guanine nucleotide-binding proteins (G-proteins) G12 and G13 have been shown to activate the small GTPase Rho. Rho stimulation leads to a rapid remodeling of the actin cytoskeleton and subsequent stress fiber formation. We investigated the involvement of G12 or G13 in stress fiber formation induced through a variety of Gq/G11-coupled receptors. Using fibroblast cell lines derived from wild-type and Galphaq/Galpha11-deficient mice, we show that agonist-dependent activation of the endogenous receptors for thrombin or lysophosphatidic acid and of the heterologously expressed bradykinin B2, vasopressin V1A, endothelin ETA, and serotonin 5-HT2C receptors induced stress fiber formation in either the presence or absence of Galphaq/Galpha11. Stress fiber assembly induced through the muscarinic M1 and the metabotropic glutamate subtype 1alpha receptors was dependent on Gq/G11 proteins. The activation of the Gq/G11-coupled endothelin ETB and angiotensin AT1A receptors failed to induce stress fiber formation. Lysophosphatidic acid, B2, and 5-HT2C receptor-mediated stress fiber formation was dependent on Galpha13 and involved epidermal growth factor (EGF) receptors, whereas thrombin, ETA, and V1A receptors induced stress fiber accumulation via Galpha12 in an EGF receptor-independent manner. Our data demonstrate that many Gq/G11-coupled receptors induce stress fiber assembly in the absence of Galphaq and Galpha11 and that this involves either a Galpha12 or a Galpha13/EGF receptor-mediated pathway.  (+info)

Effects of nitroquine on ultrastructures and cytochrome oxidase of exoerythrocytic Plasmodium yoelii in rat liver. (13/3696)

AIM: To study the effects of nitroquine acetate (NA) on the ultrastructures and cytochrome-c oxidase (CCO) of exoerythrocytic forms (EEF) of Plasmodium yoelii. METHODS: Rats were inoculated with sporozoites directly into the liver. After 48 h rats were killed. Rat liver thin sections were incubated in histochemical reaction medium, then examined by transmission electron microscopy. NA (2 mg.kg-1) was fed to rats 3.5 h and 14 h before killing the rats. RESULTS: At 3.5 h, in the parasites there appeared swelling and proliferation of mitochondria, dilation of endoplasmic reticulum, and reduction of the electron density of parasites' nuclei. The structures of the parasites disintegrated to form many autophagocytes 14 h after exposure to NA. The reaction products of CCO still existed until 14 h after using NA. CONCLUSION: CCO was not the starting point of NA action. NA interferes with the structure and function of the cytoplasm and nucleus of malaria parasites and exerts its antimalarial effects in many aspects.  (+info)

4-hydroxynonenal triggers an epidermal growth factor receptor-linked signal pathway for growth inhibition. (14/3696)

Lipid peroxidation has been implicated in the pathogenesis of various diseases. As a major product of membrane lipid peroxidation, 4-hydroxynonenal (HNE) appears after various kinds of oxidative stress, and is known to induce cell growth inhibition. We here analysed the HNE-mediated signal transduction cascade for the growth inhibition of human epidermoid carcinoma A431 cells. HNE dose-dependently induced phosphorylation of multiple cellular proteins including epidermal growth factor receptor (EGFR) in A431 cells, and rapidly upregulated the catalytic actions of EGFR for autophosphorylation and for phosphorylation of casein as an exogenous substrate. Immunoblot analysis by use of HNE-specific antibody demonstrated the binding of HNE to EGFR along with its activation. This binding, which did not induce cross-linking of EGFR, caused a capping of the receptor on the cell surface which mimicked the capping induced by EGF. Phosphorylation and activation of EGFR were followed by phosphorylation of adaptor protein Shc and activation of MAP kinase. Both genistein as a wide spectrum protein tyrosine kinase inhibitor and AG1478 as a specific EGFR tyrosine phosphorylation blocker inhibited activation of EGFR and MAP kinase by HNE. The same inhibitors prevented HNE-mediated growth inhibition, suggesting a close linkage between EGFR/MAP kinase activation and growth inhibition after exposure to HNE. Our results suggest that EGFR may be one of the primary targets of HNE for an oxidative stress-linked cell growth inhibition.  (+info)

Electrophysiological effects of LU111995 on canine hearts: in vivo and in vitro studies. (15/3696)

We studied the electrophysiological effects of LU111995 (1-15 mg/kg p.o.) in conscious dogs with chronic atrioventricular block and ventricular pacing at 50 to 130 beats/min. LU111995 had no effects on idioventricular rhythm, QRS duration, and ventricular conduction time. It significantly prolonged Q-T interval (by 5-8%) and effective refractory period (ERP) (by 5-12%) with the maximal effect at 4 h after a 10 mg/kg dose. At 10 and 15 mg/kg, it increased the ERP/Q-T ratio. In vitro, the effects of LU111995 (1 x 10(-7) to 1 x 10(-5) M) on action potentials of Purkinje fibers (PFs) and M cells were studied at cycle lengths (CL) of 300 to 2000 ms. It had no effects on maximum diastolic potential and action potential amplitude in either tissue. High concentrations induced a moderate, rate-independent decrease of Vmax in M cells. In PFs and M cells, it produced reverse use-dependent lengthening of action potential duration (APD). In PFs at long CL, the drug exhibited a biphasic concentration-dependent effect on APD: maximum prolongation (by 26% at a CL of 2000 ms) was attained at 1 x 10(-6) M, and a decrease of APD occurred at higher concentrations. In M cells, the maximum effect on APD occurred at 3 x 10(-6) M. Early afterdepolarizations were seen in 50% of M cell preparations but only at CL of 2000 ms. Triggered activity did not occur. In summary, LU111995 prolongs the Q-T interval to a limited degree and is not arrhythmogenic over the physiological range of CLs.  (+info)

Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. (16/3696)

A novel homology model of the kinase domain of Janus kinase (JAK) 3 was used for the structure-based design of dimethoxyquinazoline compounds with potent and specific inhibitory activity against JAK3. The active site of JAK3 in this homology model measures roughly 8 A x 11 A x 20 A, with a volume of approximately 530 A3 available for inhibitor binding. Modeling studies indicated that 4-(phenyl)-amino-6,7-dimethoxyquinazoline (parent compound WHI-258) would likely fit into the catalytic site of JAK3 and that derivatives of this compound that contain an OH group at the 4' position of the phenyl ring would more strongly bind to JAK3 because of added interactions with Asp-967, a key residue in the catalytic site of JAK3. These predictions were consistent with docking studies indicating that compounds containing a 4'-OH group, WHI-P131 [4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline], WHI-P154 [4-(3'-bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline], and WHI-P97 [4-(3',5'-dibromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazolin e], were likely to bind favorably to JAK3, with estimated K(i)s ranging from 0.6 to 2.3 microM. These compounds inhibited JAK3 in immune complex kinase assays in a dose-dependent fashion. In contrast, compounds lacking the 4'-OH group, WHI-P79 [4-(3'-bromophenyl)-amino-6,7-dimethoxyquinazoline], WHI-P111 [4-(3'-bromo-4'-methylphenyl)-amino-6,7-dimethoxyquinazoline], WHI-P112 [4-(2',5'-dibromophenyl)-amino-6,7-dimethoxyquinazoline], WHI-P132 [4-(2'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline], and WHI-P258 [4-(phenyl)-amino-6,7-dimethoxyquinazoline], were predicted to bind less strongly, with estimated K(i)s ranging from 28 to 72 microM. These compounds did not show any significant JAK3 inhibition in kinase assays. Furthermore, the lead dimethoxyquinazoline compound, WHI-P131, which showed potent JAK3-inhibitory activity (IC50 of 78 microM), did not inhibit JAK1 and JAK2, the ZAP/SYK family tyrosine kinase SYK, the TEC family tyrosine kinase BTK, the SRC family tyrosine kinase LYN, or the receptor family tyrosine kinase insulin receptor kinase, even at concentrations as high as 350 microM. WHI-P131 induced apoptosis in JAK3-expressing human leukemia cell lines NALM-6 and LC1;19 but not in melanoma (M24-MET) or squamous carcinoma (SQ20B) cells. Leukemia cells were not killed by dimethoxyquinazoline compounds that were inactive against JAK3. WHI-P131 inhibited the clonogenic growth of JAK3-positive leukemia cell lines DAUDI, RAMOS, LC1;19, NALM-6, MOLT-3, and HL-60 (but not JAK3-negative BT-20 breast cancer, M24-MET melanoma, or SQ20B squamous carcinoma cell lines) in a concentration-dependent fashion. Potent and specific inhibitors of JAK3 such as WHI-P131 may provide the basis for the design of new treatment strategies against acute lymphoblastic leukemia, the most common form of childhood cancer.  (+info)