Effect of quercetin on activities of protein kinase C and tyrosine protein kinase from HL-60 cells. (1/1050)

AIM: To study the effect of quercetin (Que) on the activities of cytosol and membrane protein kinase C (PKC) and tyrosine protein kinase (TPK) from HL-60 cells in vitro. METHODS: The number of viable cells was counted by a trypan blue dye exclusion test. PKC activity was assayed by incubating PKC with histone III S and [gamma-32P]ATP. TPK activity was assayed by incubating TPK with poly glutamate.tyrosine (4:1). RESULTS: Que inhibited the proliferation of HL-60 cells in a concentration-dependent manner, its IC50 was 29 (22-37) mumol.L-1 after 48-h treatment; Que strongly inhibited the activity of cytosol PKC and membrane TPK with IC50 31 (20-48) mumol.L-1, 24 (13-45) mumol.L-1, respectively, but did not affect membrane PKC and cytosol TPK from HL-60 cells in vitro. CONCLUSION: The inhibitory effect of Que on the growth of tumor cells is related to its inhibitory effects on PKC and/or TPK.  (+info)

Quercetin induced apoptosis in human leukemia HL-60 cells. (2/1050)

AIM: To examine whether quercetin (Que) might induce apoptosis in human leukemia HL-60 cells. METHODS: DNA fragmentation was visualized by agarose gel electrophoresis. Inhibition of proliferation was measured with a colorimetric MTT-assay. The DNA degradation was determined using flow cytometry, and the microscopic changes were observed by an electron microscope. RESULTS: Que 15-120 mumol.L-1 elicited typical apoptosis morphological changes including condensed chromatin, nuclear fragmentation, and reduction in volume. DNA fragmentation and DNA degradation in a concentration-dependent manner in HL-60 cells. Que inhibited HL-60 cell proliferation. The values of IC50 and 95% confidence limits were 43 (30-61) mumol.L-1 after 48-h treatment with Que. CONCLUSION: Que induced apoptosis in HL-60 cells.  (+info)

Quercetin inhibited DNA synthesis and induced apoptosis associated with increase in c-fos mRNA level and the upregulation of p21WAF1CIP1 mRNA and protein expression during liver regeneration after partial hepatectomy. (3/1050)

Quercetin, a widely distributed bioflavonoid, inhibited DNA synthesis in regenerating liver after partial hepatectomy. This inhibition was accompanied by apoptosis, evidenced by in situ end-labeling and gel electrophoresis of DNA fragmentation. Characteristic DNA fragmentation was detected as early as 2 h after injection. Northern blot analysis revealed that quercetin induced the increases in c-fos and p21WAF1CIP1 mRNA levels within 2 h. The expression of p21 protein was also enhanced, while p53 mRNA and protein levels were not affected by quercetin. These results suggest that quercetin-induced apoptosis is associated with the increase in c-fos mRNA level and the upregulation of p21 mRNA and protein expression, probably in a p53-independent pathway.  (+info)

Protective effect of flavonoids on endothelial cells against linoleic acid hydroperoxide-induced toxicity. (4/1050)

The protective effect of flavonoids against linoleic acid hydroperoxide (LOOH)-induced cytotoxicity was examined by using cultured endothelial cells. When the cells were incubated with both LOOH and flavonoids, most flavonols protected the cells from injury by LOOH. Flavones bearing an ortho-dihydroxy structure also showed a protective effect against the cytotoxicity of LOOH. However, flavanones had no effect. The structure-activity relationship revealed the presence of either the ortho-di-hydroxy structure in the B ring of the flavonoids or 3-hydroxyl and 4-oxo groups in the C ring to be important for the protective activities. The interaction between flavonoids and a-tocopherol was also examined in this system. Flavonoids that were protective against LOOH-induced cytotoxicity had at least an additive effect on the action of alpha-tocopherol against LOOH-induced damage.  (+info)

Effect of dietary antioxidants on serum lipid contents and immunoglobulin productivity of lymphocytes in Sprague-Dawley rats. (5/1050)

Sprague-Dawley rats were fed alpha-tocopherol, tocotrienol, or quercetin to examine their dietary effects on serum lipid contents and immunoglobulin productivity. In tocotrienol or quercetin groups, serum triglyceride was lower than in the none group. Moreover, in the alpha-tocopherol group, serum IgA level and IgA productivity of MLN lymphocytes were high, while in the tocotrienol group, IgM productivity of spleen lymphocytes and IgA, IgG, and IgM productivity of MLN lymphocytes were high. Thus, we suggested each antioxidant had different effects in rats.  (+info)

Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein. (6/1050)

In the presence of ATP, genistein, like the ATP analogue adenosine 5'-[beta,gamma-imido]triphosphate (pp[NH]pA), increases cystic fibrosis transmembrane conductance regulator (CFTR) chloride currents by prolonging open times. As pp[NH]pA is thought to increase CFTR currents by interfering with ATP hydrolysis at the second nucleotide-binding fold (NBF-2), the present study was undertaken to investigate the effects of genistein on a fusion protein comprising maltose-binding protein (MBP) and NBF-2 (MBP-NBF-2). MBP-NBF-2 exhibited ATPase, GTPase and adenylate kinase activities that were inhibited by genistein in a partial non-competitive manner with respect to ATP or GTP. Ki values for competitive and uncompetitive inhibition were respectively 20 microM and 63 microM for ATPase, 15 microM and 54 microM for GTPase, and 46 microM and 142 microM for adenylate kinase. For ATPase activity, genistein reduced Vmax by 29% and Vmax/Km by 77%. Additional evidence for complex-formation between genistein and MBP-NBF-2 was obtained by the detection of genistein-dependent alterations in the CD spectrum of MBP-NBF-2 that were consistent with the formation of a higher-ordered state. Addition of MBP-NBF-2 increased the fluorescence intensity of genistein, consistent with a change to a less polar environment. pp[NH]pA partially eliminated this enhanced fluorescence of genistein. These observations provide the first direct biochemical evidence that genistein interacts with CFTR, thus inhibiting NBF-2 activity, and suggest a similar mechanism for genistein-dependent stimulation of CFTR chloride currents.  (+info)

Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. (7/1050)

Transcriptional activation of the human CYP1A1 gene (coding for cytochrome P450 1A1) is mediated by the aryl hydrocarbon receptor (AhR). In the present study we have examined the effect of the common dietary polyphenolic compounds quercetin and kaempferol on the transcription of CYP1A1 and the function of the AhR in MCF-7 human breast cancer cells. Quercetin caused a time- and concentration-dependent increase in the amount of CYP1A1 mRNA and CYP1A1 enzyme activity in MCF-7 cells. The increase in CYP1A1 mRNA caused by quercetin was prevented by the transcription inhibitor actinomycin D. Quercetin also caused an increase in the transcription of a chloramphenicol reporter vector containing the CYP1A1 promoter. Quercetin failed to induce CYP1A1 enzyme activity in AhR-deficient MCF-7 cells. Gel retardation studies demonstrated that quercetin activated the ability of the AhR to bind to an oligonucleotide containing the xenobiotic-responsive element (XRE) of the CYP1A1 promoter. These results indicate that quercetin's effect is mediated by the AhR. Kaempferol did not affect CYP1A1 expression by itself but it inhibited the transcription of CYP1A1 induced by the prototypical AhR ligand 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), as measured by a decrease in TCDD-induced CYP1A1 promoter-driven reporter vector activity, and CYP1A1 mRNA in cells. Kaempferol also abolished TCDD-induced XRE binding in a gel-shift assay. Both compounds were able to compete with TCDD for binding to a cytosolic extract of MCF-7 cells. Known ligands of the AhR are, for the most part, man-made compounds such as halogenated and polycyclic aromatic hydrocarbons. These results demonstrate that the dietary flavonols quercetin and kaempferol are natural, dietary ligands of the AhR that exert different effects on CYP1A1 transcription.  (+info)

Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. (8/1050)

The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase that is involved in mammalian DNA double-strand break repair. The catalytic subunit of DNA-PK (DNA-PKcs) shares sequence homology in its kinase domain with phosphatidylinositol (PI) 3-kinase. Here, we provide a detailed kinetic analysis of DNA-PK inhibition by the PI 3-kinase inhibitor wortmannin and demonstrate this inhibition to be of a noncompetitive nature, with a Ki of 120 nM. Another inhibitor of PI 3-kinase. LY294002, its parent compound, quercetin, and other derivatives have also been studied. These chemicals are competitive inhibitors of DNA-PK, with LY294002 having a Ki of 6.0 microM. Using an antibody to wortmannin, we found that this compound binds covalently to the kinase domain of DNA-PKcs both in vitro and in vivo. Binding of wortmannin to the active site of DNA-PKcs is inhibited by ATP but not by a peptide substrate. Furthermore, wortmannin is able to bind to DNA-PKcs independently of Ku, and it is not stimulated by the presence of DNA. This suggests that the ATP binding site of DNA-PKcs is open constitutively and that DNA activation of the kinase is mediated via another mechanism.  (+info)