Loading...
(1/331) Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles.

Alveolar macrophages (AMs) avidly bind and ingest unopsonized environmental particles and bacteria through scavenger-type receptors (SRs). AMs from mice with a genetic deletion of the major macrophage SR (types AI and AII; SR-/-) showed no decrease in particle binding compared with SR+/+ mice, suggesting that other SRs are involved. To identify these receptors, we generated a monoclonal antibody (mAb), PAL-1, that inhibits hamster AM binding of unopsonized particles (TiO2, Fe2O3, and latex beads; 66 +/- 5, 77 +/- 2, and 85 +/- 2% inhibition, respectively, measured by flow cytometry). This antibody identifies a protein of approximately 70 kD on the AM surface (immunoprecipitation) that is expressed by AMs and other macrophages in situ. A cDNA clone encoding the mAb PAL-1-reactive protein isolated by means of COS cell expression was found to be 84 and 77% homologous to mouse and human scavenger receptor MARCO mRNA, respectively. Transfection of COS cells with MARCO cDNA conferred mAb-inhibitable TiO2 binding. Hamster MARCO also mediates AM binding of unopsonized bacteria (67 +/- 5 and 47 +/- 4% inhibition of Escherichia coli and Staphylococcus aureus binding by mAb PAL-1). A polyclonal antibody to human MARCO identified the expected approximately 70-kD band on Western blots of lysates of normal bronchoalveolar lavage (BAL) cells (>90% AMs) and showed strong immunolabeling of human AMs in BAL cytocentrifuge preparations and within lung tissue specimens. In normal mouse AMs, the anti-MARCO mAb ED31 also showed immunoreactivity and inhibited binding of unopsonized particles (e.g., TiO2 approximately 40%) and bacteria. The novel function of binding unopsonized environmental dusts and pathogens suggests an important role for MARCO in the lungs' response to inhaled particles.  (+info)

(2/331) Occupational exposure to dust in quartz manufacturing industry.

Owing to the abundance of a sedimentary rock, 65 small-scale quartz manufacturing enterprises, employing 650 workers, have been established in the region studied. Quartz powder manufacturing involves various processes and operations, such as manual handling of quartz stones, crushing, grinding, sieving, screening, mixing, storing and bagging. Results demonstrate that each of these operations generates high concentrations of airborne 'total' dust and respirable dust, which contain a very high percentage (> 75%) free silica. The estimated average exposure to airborne 'total' dust was 22.5 mg m-3 (Permissible Limit of Exposure 1.08 mg m-3), and respirable dust 2.93 mg m-3 (PLE 0.36 mg m-3). This shows that 'total' dust exposure was 7.7 times higher than respirable dust. Since the present work systems and practices may pose a serious health risk to the workers, public and the environment, suitable preventive and control measures have been suggested for improvement in the workplace.  (+info)

(3/331) Risks of respiratory disease in the heavy clay industry.

OBJECTIVES: Little information is available on the quantitative risks of respiratory disease from quartz in airborne dust in the heavy clay industry. Available evidence suggested that these risks might be low, possibly because of the presence in the dust of other minerals, such as illite and kaolinite, which may reduce the harmful effects of quartz. The aims of the present cross sectional study were to determine among workers in the industry (a) their current and cumulative exposures to respirable mixed dust and quartz; (b) the frequencies of chest radiographic abnormalities and respiratory symptoms; (c) the relations between cumulative exposure to respirable dust and quartz, and risks of radiographic abnormality and respiratory symptoms. METHODS: Factories were chosen where the type of process had changed as little as possible during recent decades. 18 were selected in England and Scotland, ranging in size from 35 to 582 employees, representing all the main types of raw material, end product, kilns, and processes in the manufacture of bricks, pipes, and tiles but excluding refractory products. Weights of respirable dust and quartz in more than 1400 personal dust samples, and site histories, were used to derive occupational groups characterised by their levels of exposure to dust and quartz. Full size chest radiographs, respiratory symptoms, smoking, and occupational history questionnaires were administered to current workers at each factory. Exposure-response relations were examined for radiographic abnormalities (dust and quartz) and respiratory symptoms (dust only). RESULTS: Respirable dust and quartz concentrations ranged from means of 0.4 and 0.04 mg.m-3 for non-process workers to 10.0 and 0.62 mg.m-3 for kiln demolition workers respectively. Although 97% of all quartz concentrations were below the maximum exposure limit of 0.4 mg.m-3, 10% were greater than this among the groups of workers exposed to most dust. Cumulative exposure calculations for dust and quartz took account of changes of occupational group, factory, and kiln type at study and non-study sites. Because of the importance of changes of kiln type additional weighting factors were applied to concentrations of dust and quartz during previous employment at factories that used certain types of kiln. 85% (1934 employees) of the identified workforce attended the medical surveys. The frequency of small opacities in the chest radiograph, category > or = 1/0, was 1.4% (median reading) and seven of these 25 men had category > or = 2/1. Chronic bronchitis was reported by 14.2% of the workforce and breathlessness, when walking with someone of their own age, by 4.4%. Risks of having category > or = 0/1 small opacities differed by site and were also influenced by age, smoking, and lifetime cumulative exposure to respirable dust and quartz. Although exposures to dust and to quartz were highly correlated, the evidence suggested that radiological abnormality was associated with quartz rather than dust. A doubling of cumulative quartz exposure increased the risk of having category > or = 0/1 by a factor of 1.33. Both chronic bronchitis and breathlessness were significantly related to dust exposure. CONCLUSIONS: Although most quartz concentrations at the time of this study were currently below regulatory limits in the heavy clay industry, high exposures regularly occurred in specific processes and occasionally among most occupational groups. However, there are small risks of pneumoconiosis and respiratory symptoms in the industry, although frequency of pneumoconiosis is low in comparison to other quartz exposed workers.  (+info)

(4/331) Selection of ganglioside GM1-binding peptides by using a phage library.

Ganglioside Gal beta1 --> 3GalNAc beta1 --> 4(NeuAc alpha2 --> 3) Gal beta1 --> 4Glc beta1 -->1'Cer (GM1)-binding peptides were obtained from a phage-displayed pentadecapeptide library by an affinity selection. The selection processes were in situ-monitored by a quartz-crystal microbalance method, on which a ganglioside GM1 monolayer was transferred. After five rounds of biopanning, the DNA sequencing of 18 selected phages showed that only three individual clones were selected. The peptide sequences of the random region were found to be DFRRLPGAFWQLRQP, GWWYKGRARPVSAVA and VWRLLAPPFSNRLLP. Binding constants of these phage clones to the GM1 monolayer were 10(10) M(-1). Three synthetic pentadecapeptides inhibited the binding of cholera toxin B subunit to the GM1 monolayer with an IC50 of 24, 13 and 1.0 microM, respectively. These peptides will be useful for searching functional roles of ganglioside GMI.  (+info)

(5/331) Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique.

A novel quartz crystal microbalance (QCM) technique was used to study the adhesion of nonfimbriated and fimbriated Escherichia coli mutant strains to hydrophilic and hydrophobic surfaces at different ionic strengths. This technique enabled us to measure both frequency shifts (Deltaf), i.e., the increase in mass on the surface, and dissipation shifts (DeltaD), i.e., the viscoelastic energy losses on the surface. Changes in the parameters measured by the extended QCM technique reflect the dynamic character of the adhesion process. We were able to show clear differences in the viscoelastic behavior of fimbriated and nonfimbriated cells attached to surfaces. The interactions between bacterial cells and quartz crystal surfaces at various ionic strengths followed different trends, depending on the cell surface structures in direct contact with the surface. While Deltaf and DeltaD per attached cell increased for nonfimbriated cells with increasing ionic strengths (particularly on hydrophobic surfaces), the adhesion of the fimbriated strain caused only low-level frequency and dissipation shifts on both kinds of surfaces at all ionic strengths tested. We propose that nonfimbriated cells may get better contact with increasing ionic strengths due to an increased area of contact between the cell and the surface, whereas fimbriated cells seem to have a flexible contact with the surface at all ionic strengths tested. The area of contact between fimbriated cells and the surface does not increase with increasing ionic strengths, but on hydrophobic surfaces each contact point seems to contribute relatively more to the total energy loss. Independent of ionic strength, attached cells undergo time-dependent interactions with the surface leading to increased contact area and viscoelastic losses per cell, which may be due to the establishment of a more intimate contact between the cell and the surface. Hence, the extended QCM technique provides new qualitative information about the direct contact of bacterial cells to surfaces and the adhesion mechanisms involved.  (+info)

(6/331) Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry.

This neutron reflectometry study evaluates the structures resulting from different methods of preparing polymer-cushioned lipid bilayers. Four different techniques to deposit a dimyristoylphosphatidylcholine (DMPC) bilayer onto a polyethylenimine (PEI)-coated quartz substrate were examined: 1) vesicle adsorption onto a previously dried polymer layer; 2) vesicle adsorption onto a bare substrate, followed by polymer adsorption; and 3, 4) Langmuir-Blodgett vertical deposition of a lipid monolayer spread over a polymer-containing subphase to form a polymer-supported lipid monolayer, followed by formation of the outer lipid monolayer by either 3) horizontal deposition of the lipid monolayer or 4) vesicle adsorption. We show that the initial conditions of the polymer layer are a critical factor for the successful formation of our desired structure, i.e., a continuous bilayer atop a hydrated PEI layer. Our desired structure was found for all methods investigated except the horizontal deposition. The interaction forces between these polymer-supported bilayers are investigated in a separate paper (Wong, J. Y., C. K. Park, M. Seitz, and J. Israelachvili. 1999. Biophys. J. 77:1458-1468), which indicate that the presence of the polymer cushion significantly alters the interaction potential. These polymer-supported bilayers could serve as model systems for the study of transmembrane proteins under conditions more closely mimicking real cellular membrane environments.  (+info)

(7/331) In vitro and in vivo tests for determination of the pathogenicity of quartz, diatomaceous earth, mordenite and clinoptilolite.

The effects of samples of crystalline quartz, diatomaceous earth, mordenite and clinoptilolite were investigated in vitro (as concerns erythrocyte haemolysis and lactate dehydrogenase (LDH) release from peritoneal macrophages) and in vivo (on LDH, protein and phospholipids in rat bronchoalveolar lavage (BAL), and phospholipids in rat lung tissue). The respirable mineral samples were instilled intratracheally. Determinations in the BAL were carried out after 15, 60 and 180 days, and in the lung tissue after 90, 180 and 360 days. Quartz DQ and quartz FQ induced acute, subacute and chronic inflammation and progressive fibrosis. However, due to the Al2O3 contamination on the surface of the particles quartz FQ caused a delayed response in vivo. Diatomaceous earth produced acute/subacute inflammation that gradually became more moderate after 60 days. Clinoptilolite was inert, whereas the other zeolite sample, mordenite, was cytotoxic in vivo. The reason for this was presumably the needle and rod-shaped particles in the mordenite samples. The investigation revealed that different in vitro and in vivo methods canprovide valuable data concerning the pulmonary toxicity of minerals.  (+info)

(8/331) Induction of superoxide in glioma cell line U87 stimulated with lipopolysaccharide and interferon-gamma: ESR using a new flow-type quartz cell.

The production of superoxide and nitric oxide induced in U87 glioma treated with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) was examined by electron spin resonance (ESR) spectroscopy using a newly designed flow-type quartz cuvette without detaching cells from the culture plate. ESR spectra of 2,2,6, 6-tetramethyl-4-hydroxy-1-piperidinyloxy (TEMPOL) with U87 cells on a quartz culture plate were measured at 15 min intervals. The signal intensity of TEMPOL decreased in the presence of U87 cells at the pseudo-first order rate. The signal decay was accelerated in the U87 cells treated with LPS/IFN-gamma for 24 h, and was suppressed in the presence of superoxide dismutase and catalase. By the spin-trapping method, nitric oxide from U87 cells pretreated with LPS/IFN-gamma for 24 h was measured by the ESR, but only a weak signal of nitric oxide adducts was detected. Further, the nitrite and nitrate levels in the medium did not increase for 24 h. By the ESR measurement of cells on culture plates without detachment stress, it was found that the production of superoxide was induced by LPS/IFN-gamma, but that of nitric oxide was not, in U87 glioma cells.  (+info)