Pattern formation and regulation of gene expressions in chick recombinant limbs. (33/1050)

Recombinant limbs were performed by ensembling dissociated-reaggregated wing bud mesoderm inside an ectodermal hull. The zone of polarizing activity was excluded from the mesoderm used to perform the recombinant limbs (non-polarized recombinants), and grafted when desired (polarized recombinants). Reorganization of patterning progressively occurred in the newly formed progress zone under the influence of the apical ectodermal ridge (AER), explaining the proximo-distal gradient of morphogenesis observed in developed recombinant limbs. The AER, without the influence of the polarizing region (ZPA), was sufficient to direct outgrowth and appropriate proximo-distal patterning, as observed in the expression of the Hoxa-11 and Hoxa-13 genes. The development of the recombinant limbs coursed with symmetric AER and downregulation of Bmp expression in the mesoderm supporting a negative effect of Bmp signaling upon the apical ridge. The recombinant ectoderm maintained previously established compartments of gene expressions and organized a correct dorso-ventral patterning in the recombinant progress zone. Finally, the ZPA effect was only detected on Bmp expression and pattern formation along the antero-posterior axis.  (+info)

Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. (34/1050)

To characterize the regulatory pathways involved in the inhibition of cell differentiation induced by the impairment of mitochondrial activity, we investigated the relationships occurring between organelle activity and myogenesis using an avian myoblast cell line (QM7). The inhibition of mitochondrial translation by chloramphenicol led to a potent block of myoblast differentiation. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone and oligomycin, which affect the organelle at different levels, exerted a similar influence. In addition, we provided evidence that this phenomenon was not the result of an alteration in cell viability. Conversely, overexpression of the mitochondrial T3 receptor (p43) stimulated organelle activity and strongly potentiated myoblast differentiation. The involvement of mitochondrial activity in an actual regulation of myogenesis is further supported by results demonstrating that the muscle regulatory gene myogenin, in contrast to CMD1 (chicken MyoD) and myf5, is a specific transcriptional target of mitochondrial activity. Whereas myogenin mRNA and protein levels were down-regulated by chloramphenicol treatment, they were up-regulated by p43 overexpression, in a positive relationship with the expression level of the transgene. We also found that myogenin or CMD1 overexpression in chloramphenicol-treated myoblasts did not restore differentiation, thus indicating that an alteration in mitochondrial activity interferes with the ability of myogenic factors to induce terminal differentiation.  (+info)

A 33 kDa molecular marker of sperm acrosome differentiation and maturation in the tammar wallaby (Macropus eugenii). (35/1050)

This study was undertaken to identify potential molecular markers of acrosomal biogenesis and post-testicular maturation in marsupials, using the tammar wallaby as a model species. A two-step sperm extraction procedure yielded two protein extracts of apparent acrosomal origin and a tail extract. The extracts were analysed by SDS-PAGE under reducing conditions. Several prominent polypeptide bands (45, 38 and 33 kDa) appeared common to both acrosomal extracts. Antiserum raised against the 33 kDa polypeptide from the inner acrosomal membrane matrix (IAMM) extract showed immunoreactivity with 45, 38 and 33 kDa polypeptides in both acrosomal extracts, indicating that the 33 kDa polypeptide was related to the proteins in the 45 and 38 kDa bands. Therefore, the antiserum was used as a molecular probe. Indirect immuno-fluorescence indicated that the acrosome was the major location of the 33 kDa polypeptide. This contention was confirmed by ultrastructural study: immunogold labelling indicated that the 33 kDa polypeptide associated with acrosomal matrix components throughout acrosomal development in the testes and throughout post-testicular maturation in the epididymis. The label clearly delineated the changing morphology of the maturing marsupial acrosome. This is the first study to use immunocytochemical techniques to chart testicular and post-testicular development of any sperm organelle in a marsupial. As a result of this study, a 33 kDa molecular marker of marsupial acrosome differentiation and maturation has been identified. It may be possible to chart similar events in other marsupial species and identify opportunities for manipulating fertility.  (+info)

Homeobox B3 promotes capillary morphogenesis and angiogenesis. (36/1050)

Endothelial cells (EC) express several members of the Homeobox (Hox) gene family, suggesting a role for these morphoregulatory mediators during angiogenesis. We have previously established that Hox D3 is required for expression of integrin alphavbeta3 and urokinase plasminogen activator (uPA), which contribute to EC adhesion, invasion, and migration during angiogenesis. We now report that the paralogous gene, Hox B3, influences angiogenic behavior in a manner that is distinct from Hox D3. Antisense against Hox B3 impaired capillary morphogenesis of dermal microvascular EC cultured on basement membrane extracellular matrices. Although levels of Hox D3-dependent genes were maintained in these cells, levels of the ephrin A1 ligand were markedly attenuated. Capillary morphogenesis could be restored, however, by addition of recombinant ephrin A1/Fc fusion proteins. To test the impact of Hox B3 on angiogenesis in vivo, we constitutively expressed Hox B3 in the chick chorioallantoic membrane using avian retroviruses that resulted in an increase in vascular density and angiogenesis. Thus, while Hox D3 promotes the invasive or migratory behavior of EC, Hox B3 is required for the subsequent capillary morphogenesis of these new vascular sprouts and, together, these results support the hypothesis that paralogous Hox genes perform complementary functions within a particular tissue type.  (+info)

Local control of acetylcholinesterase gene expression in multinucleated skeletal muscle fibers: individual nuclei respond to signals from the overlying plasma membrane. (37/1050)

Nuclei in multinucleated skeletal muscle fibers are capable of expressing different sets of muscle-specific genes depending on their locations within the fiber. Here we test the hypothesis that each nucleus can behave autonomously and responds to signals generated locally on the plasma membrane. We used acetylcholinesterase (AChE) as a marker because its transcripts and protein are concentrated at the neuromuscular and myotendenous junctions. First, we show that tetrodotoxin (TTX) reversibly suppresses accumulation of cell surface AChE clusters, whereas veratridine or scorpion venom (ScVn) increase them. AChE mRNA levels are also regulated by membrane depolarization. We then designed chambered cultures that allow application of sodium channel agonists or antagonists to restricted regions of the myotube surface. When a segment of myotube is exposed to TTX, AChE cluster formation is suppressed only on that region. Conversely, ScVn increases AChE cluster formation only where in contact with the muscle surface. Likewise, both the synthesis and secretion of AChE are shown to be locally regulated. Moreover, using in situ hybridization, we show that the perinuclear accumulation of AChE transcripts also depends on signals that each nucleus receives locally. Thus AChE can be up- and downregulated in adjacent regions of the same myotubes. These results indicate that individual nuclei are responding to locally generated signals for cues regulating gene expression.  (+info)

Pathogenicity of Mycobacterium avium complex serovar 9 isolated from painted quail (Excalfactoria chinensis). (38/1050)

Avian tuberculosis accompanied with many tubercular lesions in the liver and spleen was found in a painted quail at a zoological garden in Japan. Mycobacterium avium complex (MAC) serovar 9 without insertion sequence of IS901 was isolated from the liver (1.3 x 10(8) CFU/g), oviduct (9.4 x 10(7) CFU/g), and intestine (1.5 x 10(5) CFU/g). The isolates were inoculated intravenously to chickens. The inoculated chickens showed clinical symptoms of avian tuberculosis. Birds are susceptible to MAC serovar 9 without IS901.  (+info)

Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. (39/1050)

Current evidence suggests that the anterior segment of the vertebrate hindbrain, rhombomere 1, gives rise to the entire cerebellum. It is situated where two distinct developmental patterning mechanisms converge: graded signalling from an organising centre (the isthmus) located at the midbrain/hindbrain boundary confronts segmentation of the hindbrain. The unique developmental fate of rhombomere 1 is reflected by it being the only hindbrain segment in which no Hox genes are expressed. In this study we show that ectopic FGF8 protein, a candidate for the isthmic organising activity, is able to induce and repress gene expression within the hindbrain in a manner appropriate to rhombomere 1. Using a heterotopic, heterospecific grafting strategy we demonstrate that rhombomere 1 is able to express Hox genes but that both isthmic tissue and FGF8 inhibit their expression. Inhibition of FGF8 function in vivo shows that it is responsible for defining the anterior limit of Hox gene expression within the developing brain and thereby specifies the extent of the rl territory. Previous studies have suggested that a retinoid morphogen gradient determines the axial limit of expression of individual Hox genes within the hindbrain. We propose a model whereby activation by retinoids is antagonised by inhibition by FGF8 in the anterior hindbrain to set aside the territory from which the cerebellum will develop.  (+info)

Positional regulation of Krox-20 and mafB/kr expression in the developing hindbrain: potentialities of prospective rhombomeres. (40/1050)

Krox-20 and mafB/kr encode transcription factors involved in the control of hindbrain development and are expressed in rhombomeres (r) 3 and 5 and 5 and 6, respectively. To analyse the regulation of the expression of these genes by positional cues, focusing on the stages just preceding the formation of rhombomeres, we have performed ectopic grafts involving single prospective rhombomeres (pr) or couples of pr on 4-6 somite avian embryos. Transplantation of pr6 in the pr5 position leads to Krox-20 activation and grafting of pr7 in the pr5 position results in mafB/kr activation. Furthermore, pr6 grafted in the pr5 position develops an r5-like cytoarchitecture. These data establish that rostral transplantation can lead to anteriorization within the hindbrain. However, additional experiments indicate that the competence of the transplanted tissue for such anteriorization appears limited and that transformations corresponding to shifts of a single rhombomere are favoured. We also show that caudal transplantation of pr5 into the pr6 position can lead to a down-regulation of Krox-20 expression consistent with posteriorization, suggesting that caudalizing influences are present within the nonsomitic hindbrain after the 4- to 6-somite stage. Finally, combinations of extirpation and grafting experiments suggest that the regulation of mafB/kr expression in the r6-r7 region may involve anteriorizing influences in addition to previously identified posteriorizing signals from the somitic region.  (+info)