The neuropeptide head activator induces activation and translocation of the growth-factor-regulated Ca(2+)-permeable channel GRC. (65/471)

The neuropeptide head activator stimulates cell proliferation of neuronal precursor and neuroendocrine cells. The mitogenic signaling cascade requires Ca(2+) influx for which, as we show in this paper, the growth-factor-regulated Ca(2+)-permeable cation channel, GRC, is responsible. GRC is a member of the transient receptor potential channel family. In uninduced cells only low amounts of GRC are present on the plasma membrane but, upon stimulation with head activator, GRC translocates from an intracellular compartment to the cell surface. Head activator functions as an inducer of GRC translocation in neuronal and neuroendocrine cells, which express GRC endogenously, and also in COS-7 cells after transfection with GRC. Head activator is no direct ligand for GRC, but its action requires the presence of a receptor coupled to a pertussis-toxin inhibitable G-protein. Heterologously expressed GRC becomes activated by head activator, which results in opening of the channel and Ca(2+) influx. SK&F 96365, an inhibitor specific for TRP-like channels, blocks Ca(2+) entry and, consequently, translocation of GRC is prevented. Head activator-induced GRC activation and translocation are also inhibited by wortmannin and KN-93, blockers of the phosphatidylinositol 3-kinase and of the Ca(2+)/calmodulin-dependent kinase, respectively, which implies a role for both kinases in head-activator signaling to GRC.  (+info)

Molecular characterization of the TCP11 gene which is the human homologue of the mouse gene encoding the receptor of fertilization promoting peptide. (66/471)

A human testis-specific gene was isolated by subtractive hybridization between the cDNA pools of adult and fetal testes, followed by rapid amplification of cDNA ends (RACE). This gene sequence is highly homologous to a large portion of the mouse Tcp11 gene which is important in sperm function because it encodes the receptor for fertilization-promoting peptide (FPP). The gene was mapped to human chromosome band 6p21 by fluorescence in-situ hybridization. The 9 exon gene spans a 22.8 kp genomic DNA sequence. The mature processed message encodes a 441 amino acid protein that is highly homologous to the mouse 566 amino acid protein after the first 142 amino acids. Results of Northern blot and RT-PCR analyses of RNA extracted from human tissues revealed that the gene is only expressed in fertile adult testes, but not in azoospermic testes, fetal testes nor in other human tissues. Taken together, our results along with the mouse Tcp11 function suggest that TCP11 gene is important in sperm function and fertility.  (+info)

Plasma L-5-oxoproline kinetics and whole blood glutathione synthesis rates in severely burned adult humans. (67/471)

Compromised glutathione homeostasis is associated with increased morbidity in various disease states. We evaluated the kinetics of L-5-oxoproline, an intermediate in the gamma-glutamyl cycle of glutathione production, in fourteen severely burned adults by use of a primed, constant intravenous infusion of L-5-[1-(13)C]oxoproline. In nine of these patients, whole blood glutathione synthesis and plasma kinetics of glycine and leucine were also measured with [(15)N]glycine and L-[(2)H(3)]leucine tracers. Patients were studied under a "basal" condition that provided a low dose of glucose and total parenteral nutrition. For comparison with control subjects, whole blood glutathione synthesis was estimated in six healthy adults. Burn patients in a basal condition showed significantly higher rates of plasma oxoproline clearance and urinary D- and L-oxoproline excretion compared with fasting healthy control subjects. Whole blood glutathione concentration and absolute synthesis rate in the basal state were lower than for control subjects. Total parenteral feeding without cysteine but with generous methionine did not affect oxoproline kinetics or whole blood glutathione synthesis. The estimated rate of glycine de novo synthesis was also lower in burn patients, suggesting a possible change in glycine availability for glutathione synthesis. The roles of precursor amino acid availability, as well as alterations in metabolic capacity, in modulating whole blood glutathione production in burns now require investigation.  (+info)

Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice. (68/471)

Previous in vitro experiments have shown that hyperhomocysteinemia leads to oxidative inactivation of nitric oxide, in part by inhibiting the expression of cellular glutathione peroxidase (GPx-1). To elucidate the role of intracellular redox status on homocysteine-induced endothelial dysfunction and oxidant stress, heterozygous cystathionine beta-synthase-deficient (CBS(-/+)) and wild-type (CBS(+/+)) mice were treated with the cysteine donor L-2-oxothiazolidine-4-carboxylic acid (OTC). CBS(-/+) mice had significantly lower GPx-1 activity compared with their CBS(+/+) littermates, and OTC treatment led to a modest increase in tissue GPx-1 activity and significant increases in total thiols and in reduced glutathione levels in both CBS(+/+) and CBS(-/+) mice. Superfusion of the mesentery with beta-methacholine or bradykinin produced dose-dependent vasodilation of mesenteric arterioles in CBS(+/+) mice and in CBS(+/+) mice treated with OTC. In contrast, mesenteric arterioles from CBS(-/+) mice manifested dose-dependent vasoconstriction in response to both agonists. OTC treatment of CBS(-/+) mice restored normal microvascular vasodilator reactivity to beta-methacholine and bradykinin. These findings demonstrate that mild hyperhomocysteinemia leads to endothelial dysfunction in association with decreased bioavailable nitric oxide. Increasing the cellular thiol and reduced glutathione pools and increasing GPx-1 activity restores endothelial function. These findings emphasize the importance of intracellular redox balance for nitric oxide bioactivity and endothelial function.  (+info)

Gonadotropin-releasing hormone neurons in the preoptic-hypothalamic region of the rat contain lamprey gonadotropin-releasing hormone III, mammalian luteinizing hormone-releasing hormone, or both peptides. (69/471)

This study utilized a newly developed antiserum, specific for lamprey gonadotropin-releasing hormone III (l-GnRH-III), to determine the following: in which regions of the rat hypothalamus the neuronal perikarya producing l-GnRH-III are localized; and whether this peptide, known to selectively induce follicle-stimulating hormone release, is coexpressed in neurons containing mammalian luteinizing hormone-releasing hormone (m-LHRH). Double-label immunocytochemistry was performed by using an l-GnRH-III polyclonal antiserum and an LHRH monoclonal antiserum. Immunopositive neurons for l-GnRH-III, m-LHRH, or neurons coexpressing both peptides were detected within the organum vasculosum lamina terminalis (OVLT) region of the preoptic area (POA). Caudal to the OVLT, l-GnRH-III-positive neurons were also observed dorso-medially, above the third ventricle in the medial POA. The m-LHRH neurons were not observed in this area. The lateral POA region contained neurons positive for both peptides along with single-labeled neurons for each peptide. Importantly, neurons that expressed l-GnRH-III, m-LHRH, or both peptides were also detected in the ventral regions of the rostral hypothalamus, dorsolateral to the borders of the supraoptic nuclei. In both of these latter areas, neurons containing l-GnRH-III were slightly dorsal to neurons containing only m-LHRH. The l-GnRH-III perikarya and fibers were eliminated by absorption of the primary antiserum with l-GnRH-III, but not by l-GnRH-I, chicken-GnRH-II, or m-LHRH. These results indicate that, unlike other isoforms of GnRH found in the mammalian brain, l-GnRH-III neurons not only are observed in regions that control follicle-stimulating hormone release but also are colocalized with m-LHRH neurons in areas primarily controlling LH release. These findings suggest an interrelationship between these two peptides in the control of gonadotropin secretion.  (+info)

Purification and characterization of the thyrotropin-releasing hormone (TRH)-degrading serum enzyme and its identification as a product of liver origin. (70/471)

Previous biochemical studies have indicated that the membrane-bound thyrotropin-releasing hormone (TRH)-degrading enzyme (TRH-DE) from brain and liver and the serum TRH-DE are derived from the same gene. These studies also suggested that the serum enzyme is of liver origin. The present study was undertaken to verify these hypotheses. In different species, a close relationship between the activities of the serum enzyme and the particulate liver enzyme was noticed. The activity of the serum enzyme decreased when rats were treated with thioacetamide, a known hepatotoxin. With hepatocytes cultured in a sandwich configuration, release of the TRH-DE into the culture medium could also be demonstrated. The trypsin-solubilized particulate liver TRH-DE and the serum TRH-DE were purified to electrophoretic homogeneity. Both enzymes and the brain TRH-DE were recognized by a monoclonal antibody generated with the purified brain enzyme as antigen. Lectin blot analysis indicated that the serum enzyme and the liver enzyme are glycoproteins containing a sugar structure of the complex type, whereas the brain enzyme exhibits an oligomannose/hybrid glycostructure. A molecular mass of 97 000 Da could be estimated for all three enzymes after deglycosylation and SDS/PAGE followed by Western blotting. Fragment analysis of the serum TRH-DE revealed that the peptide sequences correspond to the cDNA deduced amino-acid sequences of the membrane-bound brain TRH-DE, whereby two peptides were identified that are encoded by exon 1. These data strongly support the hypothesis that the TRH-DEs are all derived from the same gene, whereby the serum enzyme is generated by proteolytic cleavage of the particulate liver enzyme.  (+info)

Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets. (71/471)

In the presence of descending modulatory inputs, the stomatogastric ganglion (STG) of the lobster Homarus americanus generates a triphasic motor pattern, the pyloric rhythm. Red pigment-concentrating hormone (RPCH) and Cancer borealis tachykinin-related peptide (CabTRP) are colocalized in a pair of fibers that project into the neuropil of the STG. When the STG was isolated from anterior ganglia modulatory inputs, the lateral pyloric (LP) and pyloric (PY) neurons became silent, whereas the anterior burster (AB) and pyloric dilator (PD) neurons were rhythmically active at a low frequency. Exogenous application of 10(-6) m RPCH activated the LP neuron but not the PY neurons; 10(-6) m CabTRP activated the PY neurons but not the LP neuron. The actions of RPCH on the LP neuron and CabTRP on the PY neurons persisted when the rhythmic drive from the PD and AB neurons was removed, suggesting that the LP and PY neurons are direct targets for RPCH and CabTRP respectively. Coapplication of 10(-6) m RPCH and 10(-6) m CabTRP elicited triphasic motor patterns with phase relationships resembling those in a preparation with modulatory inputs intact. In summary, cotransmitters acting on different network targets act cooperatively to activate a complete central pattern-generating circuit.  (+info)

Facilitation by endogenous tachykinins of the NMDA-evoked release of acetylcholine after acute and chronic suppression of dopaminergic transmission in the matrix of the rat striatum. (72/471)

Using a microsuperfusion method in vitro, the effects of the NK1, NK2, and NK3 tachykinin receptor antagonists SR140333, SR48968, and SR142801, respectively, on the NMDA-evoked release of [3H]-acetylcholine were investigated after both acute and chronic suppression of dopamine transmission in striosomes and matrix of the rat striatum. NMDA (1 mm) alone or with D-serine (10 microm) in the presence of alpha-methyl-p-tyrosine (100 microm) markedly enhanced the release of [3H]-acetylcholine through a dopamine-independent inhibitory process. In both conditions, as well as after chronic 6-OHDA-induced denervation of striatal dopaminergic fibers, SR140333, SR48968, or SR142801 (0.1 microm each) reduced the NMDA-evoked release of [3H]-acetylcholine in the matrix but not in striosome-enriched areas. These responses were selectively abolished by coapplication with NMDA of the respective tachykinin agonists, septide, [Lys5,MeLeu9,Nle10]NKA(4-10), or senktide. Distinct mechanisms are involved in the effects of the tachykinin antagonists because the inhibitory response of SR140333 was additive with that of either SR48968 or SR142801. In addition, the SR140333-evoked response remained unchanged, whereas those of SR48968 and SR142801 were abolished in the presence of N(G)-monomethyl-l-arginine (nitric oxide synthase inhibitor). Therefore, in the matrix but not in striosomes, the acute or chronic suppression of dopamine transmission unmasked the facilitatory effects of endogenously released substance P, neurokinin A, and neurokinin B on the NMDA-evoked release of [3H]-acetylcholine. Whereas substance P and neurokinin A are colocalized in same efferent neurons, their responses involve distinct circuits because the substance P response seems to be mediated by NK1 receptors located on cholinergic interneurons, while those of neurokinin A and neurokinin B are nitric oxide-dependent.  (+info)