Corticotropin-releasing hormone receptors mediate consensus interferon-alpha YM643-induced depression-like behavior in mice. (57/4084)

Depression-like behavior induced by YM643, a consensus interferon-alpha (IFN-alpha), was evaluated with the tail-suspension test in mice and compared with depression-like behavior induced by sumiferon, a natural IFN-alpha. To investigate the mechanism of IFN-alpha-induced depression-like behavior, the effects of the tricyclic antidepressant imipramine, the cyclooxygenase inhibitor indomethacin, the opioid receptor antagonist naloxone, and the selective corticotropin-releasing hormone receptor antagonist CP-154, 526 on IFN-alpha-induced depression-like behavior were evaluated. Intravenously injected YM643 (2 x 10(8)-2 x 10(9) U/kg) and sumiferon (2 x 10(6)-2 x 10(7) I.U./kg) dose-dependently increased immobility time. Repeated s.c. injection of either YM643 (6 x 10(6)-6 x 10(8) U/kg) or sumiferon (6 x 10(4)-6 x 10(6) I.U./kg) for 7 days also dose-dependently increased immobility time. After i.c.v. injection of either YM643 (2 x 10(6) U/mouse) or sumiferon (6 x 10(4) I.U./mouse), significant prolongation of immobility time also was observed. Pretreatment with imipramine (30 mg/kg s.c.) significantly reduced the YM643- or sumiferon-induced increases in immobility time. CP-154,526 (0.3-3 mg/kg s.c.) dose-dependently reduced YM643- or sumiferon-induced increases in immobility time with ID(50) values of 0.6 mg/kg against YM643 and 1.3 mg/kg against sumiferon. However, neither indomethacin (10 mg/kg s.c.) nor naloxone (3 mg/kg s.c.) had any effect on YM643- or sumiferon-induced increases in immobility time. These results suggest that IFN-alpha centrally induces depression-like behavior in mice that can be alleviated with imipramine. The results also suggest that activation of corticotropin-releasing hormone receptors is involved in IFN-alpha-induced depression-like behavior, but the prostaglandin and opioid systems do not participate in this process.  (+info)

Calcium channel activation and self-biting in mice. (58/4084)

The L type calcium channel agonist (+/-)Bay K 8644 has been reported to cause characteristic motor abnormalities in adult mice. The current study shows that administration of this drug can also cause the unusual phenomenon of self-injurious biting, particularly when given to young mice. Self-biting is provoked by injecting small quantities of (+/-)Bay K 8644 directly into the lateral ventricle of the brain, suggesting a central effect of the drug. Similar behaviors can be provoked by administration of another L type calcium channel agonist, FPL 64176. The self-biting provoked by (+/-)Bay K 8644 can be inhibited by pretreating the mice with dihydropyridine L type calcium channel antagonists such as nifedipine, nimodipine, or nitrendipine. However, self-biting is not inhibited by nondihydropyridine antagonists including diltiazem, flunarizine, or verapamil. The known actions of (+/-)Bay K 8644 as an L type calcium channel agonist, the reproduction of similar behavior with another L type calcium channel agonist, and the protection afforded by certain L type calcium channel antagonists implicate calcium channels in the mediation of the self-biting behavior. This phenomenon provides a model for studying the neurobiology of this unusual behavior.  (+info)

Relationship between inhibition of mevalonate biosynthesis and reduced fertility in laying hens. (59/4084)

The objective of the present study was to determine the effects of inhibition of mevalonate biosynthesis on fertility and embryonic survival in laying chickens. White Leghorn hens were fed for 5 weeks with a control diet alone or a diet supplemented with one of two concentrations (0.03 or 0.06%) of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors atorvastatin, lovastatin or simvastatin. The hens were artificially inseminated once a week and eggs that were not analysed for cholesterol content were incubated. When averaged across dietary groups and expressed as a percentage of all eggs incubated, the incidence of unfertilized eggs was 1.6% (controls), 29.1% (atorvastatin), 4.4% (lovastatin) and 7.9% (simvastatin). In contrast, with the exception of lower values for birds fed 0.06% atorvastatin, all groups had comparable hatchabilities of fertilized eggs. Hatchability of all eggs incubated was decreased in both atorvastatin groups compared with the other treatments. However, embryonic mortality of fertilized eggs was unaffected (P > 0.05) by diet. Compared with controls, maximum decreases in egg cholesterol of 46, 22 and 7% were obtained with atorvastatin, lovastatin and simvastatin, respectively. Although the overall correlation of egg cholesterol content with hatchability was high (r = 0.82), the hatch rate of eggs containing approximately 105 mg cholesterol ranged from 0 to 67%, indicating that egg cholesterol content was not the only factor influencing embryo survival. This is the first study to indicate that a mevalonate-derived product or products plays an important role in avian fertility. In addition, this work challenges the contention that virtually all of the cholesterol in chicken egg yolk is essential for embryonic development and survival.  (+info)

Nonconserved residues in the second transmembrane-spanning domain of the D(4) dopamine receptor are molecular determinants of D(4)-selective pharmacology. (60/4084)

The molecular determinants that govern selective ligand binding to the rat D(4) dopamine receptor were investigated by substituting D(2) dopamine receptor sequences into a D(4) dopamine receptor background. The resulting mutant D(4) dopamine receptors were then screened with a panel of 10 selective and nonselective ligands, which included two allosteric modulators as sensitive measures of protein conformational changes. Mutation of a phenylalanine at position 88 in the second transmembrane-spanning domain (TMS2) of the D(4) receptor to the corresponding valine in the D(2) receptor D(4)-F88V resulted in an approximately 100-fold decrease in the affinity of the highly D(4)-selective drug 3-([4-(4-iodophenyl) piperazin-1-yl]methyl)-1H-pyrrolo[2,3-b]pyridine (L-750,667) without substantially affecting the binding of the other ligands. Mutations at the extracellular side of D(4)-TMS3 produced moderate decreases in L-750,667 binding affinities with concomitant increases in binding affinity for the D(2)/D(3)-selective antagonist (-)-raclopride. However, the binding affinities of these same D(4)-TMS3 mutants for the allosteric modulator isomethylbutylamiloride also were an anomalous 6- to 20-fold higher than either wild-type receptor. In the combined D(4)-F88V/TMS3 mutants, L-750,667 binding affinity was further decreased, but this decrease was not additive. More importantly, the combined D(4)-F88V/TMS3 mutants had (-)-raclopride and isomethylbutylamiloride binding properties that reverted back to those of the wild-type D(4)-receptor. In contrast to the D(4)-F88V mutant, the adjacent D(4)-L87W mutant had an increased affinity for ligands with extended structures, but had essentially no effect on ligands with compact structures. These findings demonstrate that two residues near the extracellular side of D(4)-TMS2 are critical molecular determinants for the selective binding of L-750,667 and ligands with extended structures.  (+info)

Atorvastatin compared with simvastatin-based therapies in the management of severe familial hyperlipidaemias. (61/4084)

We compared atorvastatin with simvastatin-based therapies in a prospective observational study of 201 patients with severe hyperlipidaemia. Atorvastatin 10 mg therapy was substituted for simvastatin 20 mg, 20 mg for 40 mg, 40 mg for simvastatin 40 mg plus resin, and 80 mg for simvastatin-fibrate-resin therapy. Lipid and safety profiles were assessed. Atorvastatin reduced total cholesterol by 31 +/- 11-40 +/- 14% vs. 25 +/- 12-31 +/- 11%; LDL by 38 +/- 16-45 +/- 18% vs. 31 +/- 18-39 +/- 18% and geometric mean triglycerides by 29.3-37.3% vs. 16.6-24.8%, but reduced HDL 11% +/- 47% at 80 mg compared with a 16% +/- 34% increase with simvastatin-based therapy. Target LDL < 3.5 mmol/l was achieved more often with atorvastatin (63% vs. 50%; p < 0.001). Atorvastatin increased geometric mean fibrinogen by 12-20% vs. a 0-6% fall with simvastatin (p << 0.001). Side effects were noted in 10-36% of patients, including one case of rhabdomyolysis, and 36% discontinued therapy. These data suggest that atorvastatin is more effective than current simvastatin-based therapies in achieving treatment targets in patients with familial hypercholesterolaemia but at the expense of a possible increase in side-effects. This issue needs further study in randomized controlled trials.  (+info)

Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. (62/4084)

Three 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (HCRIs), atorvastatin, pravastatin, and cerivastatin, inhibited phorbol ester-stimulated superoxide anion (O(2)(-)) formation in endothelium-intact segments of the rat aorta in a time- and concentration-dependent manner (maximum inhibition of 70% after 18 hours at 1 to 10 micromol/L). The HMG-CoA reductase product mevalonic acid (400 micromol/L) reversed the inhibitory effect of the HCRIs, which, conversely, was mimicked by inactivation of p21 Rac with Clostridium sordellii lethal toxin but not by inactivation of p21 Rho with Clostridium botulinum exoenzyme (C3). A mevalonate-sensitive inhibition of phorbol ester-stimulated O(2)(-) formation by atorvastatin was also observed in porcine cultured endothelial cells and in a murine macrophage cell line. In the rat aorta, no effect of the HCRIs on protein kinase C, NADPH oxidase, or superoxide dismutase (SOD) activity and expression was detected, whereas that of endothelial nitric oxide (NO) synthase was enhanced approximately 2-fold. Moreover, exposure of the segments to atorvastatin resulted in a significant improvement of endothelium-dependent NO-mediated relaxation, and this effect was abolished in the presence of SOD. Taken together, these findings suggest that in addition to augmenting endothelial NO synthesis, HCRIs inhibit endothelial O(2)(-) formation by preventing the isoprenylation of p21 Rac, which is critical for the assembly of NADPH oxidase after activation of protein kinase C. The resulting shift in the balance between NO and O(2)(-) in the endothelium improves endothelial function even in healthy blood vessels and therefore may provide a reasonable explanation for the beneficial effects of HCRIs in patients with coronary heart disease in addition to or as an alternative to the reduction in serum LDL cholesterol.  (+info)

Action of atorvastatin in combined hyperlipidemia : preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles. (63/4084)

Combined hyperlipidemia (CHL) is characterized by a concomitant elevation of plasma levels of triglyceride-rich, very low density lipoproteins (VLDLs) and cholesterol-rich, low density lipoproteins (LDLs). The predominance of small, dense LDLs contributes significantly to the premature development of coronary artery disease in patients with this atherogenic dyslipoproteinemia. In the present study, we evaluated the impact of atorvastatin, a newly developed inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase, on the cholesteryl ester transfer protein (CETP)-mediated remodeling of apolipoprotein (apo) B-containing lipoprotein subspecies, and more specifically, the particle subpopulations of VLDL and LDL in CHL. In parallel, we evaluated the atorvastatin-induced modulation of the quantitative and qualitative features of atherogenic apo B-containing and cardioprotective apo AI-containing lipoprotein subspecies. Atorvastatin therapy (10 mg/d for a 6-week period) in patients with a lipid phenotype typical of CHL (n=18) induced reductions of 31% (P<0.0001) and 36% (P<0.0001) in plasma total cholesterol and LDL cholesterol, respectively. In addition, atorvastatin significantly reduced VLDL cholesterol, triglycerides, and apo B levels by 43% (P<0.0001), 27% (P=0.0006), and 31% (P<0.0001), respectively. The plasma concentrations of triglyceride-rich lipoproteins (VLDL1, Sf 60 to 400; VLDL2, Sf 20 to 60; and intermediate density lipoproteins, Sf 12 to 20) and of LDL, as determined by chemical analysis, were markedly diminished after drug therapy (-30% and -28%, respectively; P<0.0007). Atorvastatin significantly reduced circulating levels of all major LDL subspecies, ie, light (-28%, P<0.0008), intermediate (-27%, P<0.0008), and dense (-32%, P<0.0008) LDL; moreover, in terms of absolute lipoprotein mass, the reduction in dense LDL levels (mean -62 mg/dL) was preponderant. In addition, the reduction in plasma dense LDL concentration after therapy was significantly correlated with a reduction in plasma VLDL1 levels (r=0.429, P=0.0218). Atorvastatin induced a significant reduction (-7%, P=0.0039) in total CETP-dependent CET activity, which accurately reflects a reduction in plasma CETP mass concentration. Total CETP-mediated CET from high density lipoproteins to apo B-containing lipoproteins was significantly reduced (-26%, P<0.0001) with drug therapy. Furthermore, CETP activity was significantly correlated with the atorvastatin-induced reduction in plasma VLDL1 levels (r=0.456, P=0. 0138). Indeed, atorvastatin significantly and preferentially decreased CET from HDL to the VLDL1 subfraction (-37%, P=0.0064), thereby reducing both the levels (-37%, P=0.0001) and the CE content (-20%, P<0.005) of VLDL1. We interpret our data to indicate that 2 independent but complementary mechanisms may be operative in the atorvastatin-induced reduction of atherogenic LDL levels in CHL: first, a significant degree of normalization of both the circulating levels and the quality of their key precursors, ie, VLDL1, and second, enhanced catabolism of the major LDL particle subclasses (ie, light, intermediate, and dense LDL) due to upregulation of hepatic LDL receptors.  (+info)

alpha(2A)-adrenergic receptor stimulation potentiates calcium release in platelets by modulating cAMP levels. (64/4084)

alpha(2A)-Adrenergic receptor-mediated Ca(2+) signaling and integrin alpha(IIb)beta(3) exposure were investigated in human platelets under conditions where indirect, thromboxane- or ADP-mediated effects were absent. The alpha(2)-adrenergic receptor agonists, UK14304 and epinephrine (EPI), were unable to raise cytosolic levels of inositol 1,4,5-trisphosphate (InsP(3)) or Ca(2+) but potentiated the [Ca(2+)](i) rises evoked by other agonists that act through stimulation of phospholipase C (thrombin or platelet-activating factor) or stimulation of Ca(2+)-induced Ca(2+) release (CICR) in the absence of InsP(3) generation (thimerosal or thapsigargin). In addition, alpha(2)-adrenergic stimulation resulted in a 20% lowering in the cytosolic cAMP level. In platelets treated with G(salpha)-stimulating prostaglandin E(1), EPI increased the Ca(2+) signal evoked by either phospholipase C- or CICR-stimulating agonists mainly through modulation of the cAMP level. The stimulating effects of UK14304 and EPI on platelet Ca(2+) responses, and also on integrin alpha(IIb)beta(3) exposure and platelet aggregation, were abolished by pharmacological stimulation of cAMP-dependent protein kinase, and these effects were mimicked by inhibition of this activity. In permeabilized platelets, UK14304 and EPI potentiated InsP(3)-induced, CICR-mediated mobilization of Ca(2+) from internal stores in a similar way as did inhibition of cAMP-dependent protein kinase. In summary, a G(ialpha)-mediated decrease in cAMP level appears to play a major role in the platelet-activating effects of alpha(2A)-adrenergic receptor stimulation. Thus, in platelets, unlike other cell types, occupation of the G(ialpha)-coupled alpha(2A)-adrenergic receptors does not result in phospholipase C activation but rather in modulation of the Ca(2+) response by relieving cAMP-mediated suppression of InsP(3)-dependent CICR.  (+info)