Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. (49/4084)

Increased vascular endothelial growth factor (VEGF) expression is associated with colon cancer metastases. We hypothesized that inhibition of VEGF receptor activity could inhibit colon cancer liver metastases. BALB/c mice underwent splenic injection with CT-26 colon cancer cells to generate metastases. Mice received daily i.p. injections of vehicle, tyrosine kinase inhibitor for Flk-1/KDR (SU5416) or tyrosine kinase inhibitor for VEGF, basic fibroblast growth factor, and platelet-derived growth factor receptors (SU6668). SU5416 and SU6668 respectively inhibited metastases (48.1% and 55.3%), microvessel formation (42.0% and 36.2%), and cell proliferation (24.4% and 27.3%) and increased tumor cell (by 2.6- and 4.3-fold) and endothelial cell (by 18.6- and 81.4-fold) apoptosis (P<0.001). VEGF receptor inhibitors increased endothelial cell apoptosis, suggesting that VEGF may serve as an endothelial survival factor.  (+info)

Characterization of a duocarmycin-DNA adduct-recognizing protein in cancer cells. (50/4084)

Duocarmycins have been reported to derive their potent antitumor activity through a sequence-selective minor groove alkylation of N3 adenine in double-stranded DNA. We have used gel mobility shift assays to detect proteins that bind to DNA treated in vitro with duocarmycin SA and identified a protein, named duocarmycin-DNA adduct recognizing protein (DARP), which binds with increased affinity to duocarmycin-damaged DNA. Examination with partially purified DARP revealed that the protein recognized not only the DNA adduct of structurally related drug, CC-1065, but unexpectedly, the protein also recognized the DNA adduct of another chemotype of minor groove binder, anthramycin. These results demonstrate that DARP recognizes the structural alteration of DNA induced by these potent DNA-alkylating drugs, suggesting the possibility that the protein might modulate the antitumor activity of these drugs.  (+info)

Inhibition of angiogenesis by blocking activation of the vascular endothelial growth factor receptor 2 leads to decreased growth of neurogenic sarcomas. (51/4084)

Neurogenic sarcomas are incurable, common malignant human peripheral nerve tumors subject to local recurrence and systemic metastasis. In this study, the vascularity, vascular endothelial growth factor (VEGF) expression, and effects of inhibiting VEGF receptor on growth of neurogenic sarcomas were examined. Vascularization and VEGF expression were 6.4- and 15-fold higher in tumors than in normal nerves. The small molecule inhibitor (SU5416) of VEGF receptor 2 had no effect on neurogenic sarcoma cell lines in vitro, but the growth of a human tumor explant xenograft model was reduced by 54.8% compared to vehicle. Reduction in tumor growth was due to decreased tumor angiogenesis, leading to reduction of tumor cell proliferation and increased apoptosis. Inhibiting VEGF function may therefore be a useful adjuvant therapy for neurogenic sarcomas.  (+info)

Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. (52/4084)

Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC.  (+info)

Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. (53/4084)

BACKGROUND: Hypercholesterolemia causes an upregulation of vascular angiotensin II type 1 (AT1) receptor expression in cell culture and animal models. The presented studies were undertaken to examine AT1 receptor overexpression in hypercholesterolemic men and therapeutic interventions thereof by HMG CoA reductase inhibitors (statins). METHODS AND RESULTS: Effects of AT1 receptor activation were measured by assessing the blood pressure increase after infusion of angiotensin II in normo- (cholesterol 181+/-11 mg/dL) and hypercholesterolemic (cholesterol 294+/-10 mg/dL) men (n=19 and 20, respectively). AT1 receptor expression was assessed on isolated platelets. Some patients were investigated before and after cholesterol-lowering therapy with statins. Hypercholesterolemia led to a significant increase of angiotensin II-induced blood pressure elevation. AT1 receptor expression was significantly enhanced in hypercholesterolemic individuals (B(max)=5.2+/-1.2 fmol/mg protein) compared with normocholesterolemic men (B(max)=2.1+/-0.2 fmol/mg protein). Cholesterol-lowering treatment with statins reversed the elevated blood pressure response to angiotensin II infusion (P<0.05) and downregulated AT1 receptor density (P<0.05). CONCLUSIONS: Hypercholesterolemia induces AT1 receptor overexpression and enhances biological effects of angiotensin II in men. These findings provide novel insights into the pathogenesis of hypertension and atherosclerosis and may initiate rational and new therapeutic concepts.  (+info)

The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. (54/4084)

Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 microm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.  (+info)

Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. (55/4084)

Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the biosynthesis of dopamine (DA). TH activity is significantly diminished in Parkinson's disease (PD) and by the neurotoxic amphetamines, thereby accentuating the reductions in DA associated with these conditions. Reactive oxygen and nitrogen species have been implicated in the damage to DA neurons seen in PD and in reaction to amphetamine drugs of abuse, so we investigated the hypothesis that peroxynitrite (ONOO(-)) could interfere with TH catalytic function. ONOO(-) caused a concentration-dependent inactivation of TH. The inactivation was associated with tyrosine nitration (maximum of four tyrosine residues nitrated per TH monomer) and extensive sulfhydryl oxidation. Tetranitromethane, which causes sulfhydryl oxidation at pH 6 and 8 but which nitrates tyrosines only at pH 8, inactivated TH equally at either pH. Bicarbonate protected TH from ONOO(-)-induced inactivation and sulfhydryl oxidation but increased significantly tyrosine nitration. PNU-101033 blocked ONOO(-)-induced tyrosine nitration in TH but could not prevent enzyme inactivation or sulfhydryl oxidation. Together, these results indicate that the inactivation of TH by ONOO(-) is mediated by sulfhydryl oxidation. The coincident nitration of tyrosine residues appears to exert little influence over TH catalytic function.  (+info)

Swimming marine Synechococcus strains with widely different photosynthetic pigment ratios form a monophyletic group. (56/4084)

Unicellular marine cyanobacteria are ubiquitous in both coastal and oligotrophic regimes. The contribution of these organisms to primary production and nutrient cycling is substantial on a global scale. Natural populations of marine Synechococcus strains include multiple genetic lineages, but the link, if any, between unique phenotypic traits and specific genetic groups is still not understood. We studied the genetic diversity (as determined by the DNA-dependent RNA polymerase rpoC1 gene sequence) of a set of marine Synechococcus isolates that are able to swim. Our results show that these isolates form a monophyletic group. This finding represents the first example of correspondence between a physiological trait and a phylogenetic group in marine Synechococcus. In contrast, the phycourobilin (PUB)/phycoerythrobilin (PEB) pigment ratios of members of the motile clade varied considerably. An isolate obtained from the California Current (strain CC9703) displayed a pigment signature identical to that of nonmotile strain WH7803, which is considered a model for low-PUB/PEB-ratio strains, whereas several motile strains had higher PUB/PEB ratios than strain WH8103, which is considered a model for high-PUB/PEB-ratio strains. These findings indicate that the PUB/PEB pigment ratio is not a useful characteristic for defining phylogenetic groups of marine Synechococcus strains.  (+info)