Immune complex-induced integrin activation and L-plastin phosphorylation require protein kinase A. (33/4084)

Integrins in resting leukocytes are poorly adhesive, and cell activation is required to induce integrin-mediated adhesion. We recently demonstrated a close correlation between phosphorylation of Ser(5) in L-plastin (LPL), a leukocyte-specific 67-kDa actin bundling protein, and activation of alpha(M)beta(2)-mediated adhesion in polymorphonuclear neutrophils (PMN) (Jones, S. L., Wang, J., Turck, C. W., and Brown, E. J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 9331-9336). However, the kinase that phosphorylates LPL Ser(5) has not been identified. We found that cAMP-dependent protein kinase (PKA), but not a variety of other serine kinases, can specifically phosphorylate LPL and LPL-derived peptides on Ser(5) in vitro. The cell-permeable cAMP analog 8-bromo-cAMP and the adenylate cyclase activator forskolin both induce LPL phosphorylation in cells. Two PKA inhibitors, H89 and KT5720, inhibited immune complex (IC)-stimulated LPL phosphorylation as well as IC-induced activation of alpha(M)beta(2)-mediated adhesion in PMN. The dose response of H89 inhibition of PMN adhesion correlated with its inhibition of LPL phosphorylation in response to IC. IC stimulation also transiently increased intracellular cAMP concentration in PMN. Thus, PKA functions in an integrin activation pathway initiated by IC binding to Fcgamma receptors in addition to its better known role as a negative regulator of cell activation by G protein-coupled receptors. In contrast, LPL Ser(5) phosphorylation and PMN adhesion induced by formylmethionyl-leucylphenylalanine or phorbol myristate acetate were not affected by PKA inhibitors, suggesting that a different kinase(s) is responsible for LPL phosphorylation in response to these agonists. Phosphoinositidyl 3-kinase also is required for FcgammaR but not formylmethionyl-leucylphenylalanine- or phorbol myristate acetate-induced LPL phosphorylation and activation of alpha(M)beta(2). Two phosphoinositidyl 3-kinase inhibitors blocked FcgammaR-induced cAMP accumulation, demonstrating that this kinase acts upstream of PKA. These data demonstrate a necessary role for PKA in IC-induced integrin activation and LPL phosphorylation.  (+info)

Participation of protein kinases in staurosporine-induced interleukin-6 production by rat peritoneal macrophages. (34/4084)

The incubation of rat peritoneal macrophages in the presence of staurosporine, a non-specific protein kinase inhibitor, induced interleukin-6 (IL-6) production in a time- and concentration-dependent manner at 6.3-63 nM, but at 210 nM, the stimulant effect on IL-6 production was reduced. The levels of IL-6 mRNA as determined by a reverse transcription-polymerase chain reaction were also increased by staurosporine in parallel with the ability to induce IL-6 production. Compounds structurally related to staurosporine including K-252a (non-specific protein kinase inhibitor) and KT-5720 (inhibitor of cyclic AMP-dependent protein kinase, PKA), did not increase IL-6 production by peritoneal macrophages. Staurosporine-induced increases in IL-6 production and expression of IL-6 mRNA were decreased by the PKC inhibitors, H-7 (2.7-27 microM), Ro 31-8425 (1-10 microM) and calphostin C (0.3-3 microM) and by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002 (30-100 microM), but were further increased by the protein tyrosine kinase (PTK) inhibitor, genistein (12-37 microM). The staurosporine-induced increase in IL-6 production was not affected by the PKA inhibitor, H-89 (0.1-3 microM). These findings suggest that the induction of IL-6 production by staurosporine is secondary to elevation of IL-6 mRNA level, which, in turn, is positively regulated by the activation of PKC and PI 3-kinase and negatively regulated by the activation of PTK. PKA does not appear to play a significant role.  (+info)

Atriopeptin, sodium azide and cyclic GMP reduce secretion of aqueous humour and inhibit intracellular calcium release in bovine cultured ciliary epithelium. (35/4084)

This study examined the involvement of cyclic GMP, protein kinase G and intracellular Ca2+ movements in the modulation of aqueous humour formation. Using the bovine arterially-perfused eye preparation, drug effects on intraocular pressure and aqueous humour formation rate were measured by manometry and fluorescein dilution, respectively. Drug effects on intracellular [Ca2+] were determined by fura-2 fluorescence ratio technique in nontransformed, cultured ciliary epithelium. Intra-arterial injection of atriopeptin (50 pmol) or sodium azide (10 nmol) produced significant reduction in aqueous humour formation (>38%). This was blocked by selective inhibition (KT-5823) of protein kinase G, but not by selective inhibition (KT-5720) of protein kinase A. Reductions of intraocular pressure produced by atriopeptin or azide were almost completely blocked by KT-5823. ATP (100 microM) caused rapid, transient increase in intracellular Ca2+ followed by a slow decline and prolonged plateau. This response showed concentration-dependent inhibition by atriopeptin, azide or 8-bromo cyclic GMP, and this inhibition of the rapid (peak) Ca2+ increase was enhanced by zaprinast (100 microM; phosphodiesterase inhibitor). KT-5823 blocked the suppression of the peak Ca2+ response but not suppression of the plateau. Arterial perfusion of ATP (0.1-100 microM) produced a concentration-dependent decrease in aqueous humour formation. Aqueous humour formation in the bovine eye can be manipulated through cyclic GMP, operating via protein kinase G. Close parallels appear when Ca2+ movements are modified by similar manipulations of cyclic GMP, suggesting that Ca2+ transients may play an important role in aqueous humour formation and that interplay occurs between cyclic GMP and Ca2+.  (+info)

Different effect of simvastatin and atorvastatin on key enzymes involved in VLDL synthesis and catabolism in high fat/cholesterol fed rabbits. (36/4084)

The effects of atorvastatin (3 mg kg(-1)) and simvastatin (3 mg kg(-1)) on hepatic enzyme activities involved in very low density lipoprotein metabolism were studied in coconut oil/cholesterol fed rabbits. Plasma cholesterol and triglyceride levels increased 19 and 4 fold, respectively, after 7 weeks of feeding. Treatment with statins during the last 4 weeks of feeding abolished the progression of hypercholesterolaemia and reduced plasma triglyceride levels. 3-Hydroxy-3-methyl-glutaryl Coenzyme A reductase, acylcoenzyme A:cholesterol acyltransferase, phosphatidate phosphohydrolase and diacylglycerol acyltransferase activities were not affected by drug treatment. Accordingly, hepatic free cholesterol, cholesteryl ester and triglyceride content were not modified. Simvastatin treatment caused an increase (72%) in lipoprotein lipase activity without affecting hepatic lipase activity. Atorvastatin caused a reduction in hepatic phospholipid content and a compensatory increase in CTP:phosphocholine cytidylyl transferase activity. The results presented in this study suggest that, besides the inhibitory effect on 3-hydroxy-3-methyl-glutaryl Coenzyme A reductase, simvastatin and atorvastatin may have additional effects that contribute to their triglyceride-lowering ability.  (+info)

Advanced glycated end-products (AGE) during haemodialysis treatment: discrepant results with different methodologies reflecting the heterogeneity of AGE compounds. (37/4084)

BACKGROUND: There has been much recent interest in accumulation of advanced glycation end-products (AGE) in uraemic patients. Analysis of AGE has been difficult, because commonly used methodologies, i.e. immunodetection assays or fluorescence measurements, reflect group reactivity and are not specific for chemically defined substances. Some investigators measured individual AGE compounds, e.g. pentosidine, carboxymethyllysine, pyrraline or imidazolone, but a systematic assessment of known compounds using specific HPLC methods in diabetic and non-diabetic end-stage renal disease (ESRD) patients during treatment has not been performed. METHODS: For the present study, the concentrations of early and late products of the Maillard reaction in plasma and ultrafiltrate were monitored during high-flux dialysis sessions in diabetic and non-diabetic patients. AGE were analysed by fluorescence spectroscopy and size exclusion chromatography with fluorescence detection. Specific HPLC methods were used to quantify the Amadori product fructoselysine and the AGE compounds pentosidine and pyrraline in acid or enzymatic hydrolysates. RESULTS: Using size exclusion chromatography, we confirmed a similar fluorescent peak distribution for diabetic and non-diabetic ESRD patients. Main fractions were found at approximately 70, approximately 14 and <2 kDa, confirming results obtained by other authors. In diabetic patients, the fluorescence intensity of the low molecular weight fraction was higher. Uraemic patients differed from controls mainly by the fluorescence of the low molecular weight fraction. The peak spectrum in ultrafiltrates was similar to that in plasma regarding low molecular weight fractions and the 14 kDa peak, but no protein-bound fluorescence was found at 70 kDa. HPLC analysis revealed a significant reduction of plasma pentosidine during high-flux dialysis in non-diabetic (from 9.1+/-5.1 to 8.5+/-4.7 pmol/mg protein; P<0.05) and diabetic patients (from 10.0+/-9.1 to 6.8+/-4.0 pmol/mg protein; P<0.05). In contrast, plasma fructoselysine showed only a non-significant trend to decrease in diabetic (from 3.24+/-0.88 to 3.05+/-0.77 nmol/mg protein) and non-diabetic patients (from 2.69+/-0.52 to 2.56+/-0.50 nmol/mg protein). Pyrraline, a nonfluorescent late AGE product derived from reaction of 3-deoxyglucosone with lysine, could not be detected (detection limit approximately 40 pmol/mg protein). Comparing HPLC and size exclusion analysis, it was found that pentosidine accumulated in the range of low molecular weight substances and was removed by high-flux dialysis. CONCLUSIONS: High-flux dialysis reduces the plasma concentration of fluorescent AGE compounds, i.e. pentosidine, but the Amadori product fructoselysine is not removed, indicating that this compound is protein associated.  (+info)

Potent antitumor activity of MS-247, a novel DNA minor groove binder, evaluated by an in vitro and in vivo human cancer cell line panel. (38/4084)

We synthesized a novel anticancer agent MS-247 (2-[[N-[1-methyl-2-[5-[N-[4-[N,N-bis(2-chloroethyl) amino] phenyl]] carbamoyl]-1H-benzimidazol-2-yl] pyrrol-4-yl] carbamoyl] ethyldimethylsulfonium di-p-toluenesulfonate) that has a netropsin-like moiety and an alkylating residue in the structure. We evaluated antitumor activity of MS-247 using a human cancer cell line panel coupled with a drug sensitivity database and subsequently using human cancer xenografts. The average MS-247 concentration required for 50% growth inhibition against a panel of 39 cell lines was 0.71 microM. The COMPARE analysis revealed that the differential growth inhibition pattern of MS-247 significantly correlated with those of camptothecin analogues and anthracyclins, indicating that MS-247 and the two drug groups might have similar modes of action. MS-247 exhibited remarkable antitumor activity against various xenografts. A single i.v. injection of MS-247 significantly inhibited the growth of all 17 xenografts tested, which included lung, colon, stomach, breast, and ovarian cancers. In many cases, MS-247 was more efficacious than cisplatin, Adriamycin, 5-fluorouracil, cyclophosphamide, VP-16, and vincristine and was almost comparable with paclitaxel and CPT-11; these are the most clinically promising drugs at present. MS-247 was noticeably more effective than paclitaxel (in HCT-15) and CPT-11 (in A549, HBC-4, and SK-OV-3). The toxicity of MS-247, indicated by body weight loss, was reversible within 10 days after administration. The MS-247 mode of action showed DNA binding activity at the site where Hoechst 33342 bound, inhibited topoisomerases I and II (as expected by the COMPARE analysis) blocked the cell cycle at the G2-M phase, and induced apoptosis. These results indicate that MS-247 is a promising new anticancer drug candidate to be developed further toward clinical trials.  (+info)

Codeine concentration in hair after oral administration is dependent on melanin content. (39/4084)

BACKGROUND: Analysis of drugs in hair has been used on a qualitative basis to estimate earlier exposure to drugs. Clinical applications are rare because of the lack of dose-response relationships in the studies performed to date, and questions remain regarding the mechanisms of drug incorporation into hair. Several human studies have shown differences in drug accumulation between pigmented and nonpigmented hair. However, the melanin concentration in hair was not determined and correlated to the amount of drug incorporated. METHODS: Nine human subjects were given codeine as a single oral dose, and plasma codeine concentrations were determined for 24 h, using gas chromatography-mass spectrometry. Hair samples were obtained weekly for a month. Total melanin, eumelanin, and codeine were measured quantitatively in hair samples by spectrophotometry, HPLC, and gas chromatography-mass spectrometry, respectively. RESULTS: There was an exponential relationship between codeine and melanin concentrations in hair, (r(2) = 0.95 with total melanin and r(2) = 0.83 with eumelanin). After normalizing the results by the area under the curve for codeine in plasma, we obtained r(2) = 0.86 for codeine vs total melanin and r(2) = 0.90 vs eumelanin. CONCLUSIONS: Our results stress the importance of melanin determination when measuring drugs in hair. We postulate that analysis of drug concentration in hair may be worthwhile in the monitoring of drug compliance if the results are normalized for melanin content.  (+info)

Hepatic effects in beagle dogs administered atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, for 2 years. (40/4084)

The chronic toxicity of atorvastatin (AT), an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, was evaluated in beagle dogs. Dogs were treated with 0, 10, 40, or 120 mg/kg of AT daily. Treatment lengths were 52 wk, 52 wk followed by 12 wk without drug, or 104 wk. Decreases in cholesterol levels were dose related and stable throughout the treatment period. Increases in alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase were transient and dose related in severity at > or = 40 mg/kg. Two dogs administered 120 mg/kg of AT daily were sacrificed moribund during the first 9 wk of treatment. Hepatic lesions were reversible with or without continued treatment and dose related in severity and distribution. Hepatic microgranulomas and hepatocellular degeneration were seen at the 120-mg/kg dose in dogs sacrificed before 53 wk. Before 53 wk, hepatocellular lipofuscin deposits were increased in dogs given > or = 40 mg/kg of AT daily but were similar to controls after 12 wk without drug and after 104 wk of continuous treatment. Bile stasis occurred in dogs given > or = 40 mg/kg of AT daily at all time points but was less severe after reversal and at week 104 compared with week 52.  (+info)