A plant-like vacuolar H(+)-pyrophosphatase in Plasmodium falciparum. (49/1435)

Inorganic pyrophosphate promoted the acidification of a subcellular compartment in cell homogenates of Plasmodium falciparum trophozoites. The proton gradient driven by pyrophosphate was collapsed by addition of NH(4)Cl or the K(+)/H(+) exchanger nigericin and eliminated by the pyrophosphate analog aminomethylenediphosphonate. Pyrophosphatase activity was dependent upon K(+), and partially inhibited by Na(+). The presence of a plant-like vacuolar H(+)-translocating pyrophosphatase (V-H(+)-PPase) was confirmed using antibodies raised against conserved peptide sequences of the enzyme, which cross reacted with a protein band of 76.5 kDa. Immunofluorescence microscopy using these antibodies showed a general fluorescence over the whole parasites and intracellular bright spots suggesting a vesicular and plasma membrane localization. Together, these results indicate the presence in P. falciparum of a V-H(+)-PPase of similar characteristics to those of the enzyme from plants.  (+info)

Cytochemical studies on golgi apparatus, GERL, and lysosomes in neurons of dorsal root ganglia in mice. (50/1435)

Cytochemically demonstrable thiamine pyrophosphatase activity is present in the innermost Golgi element in both small and large neurons of the dorsal root ganglia in CF1, C57 black, and C57 beige mice, thus resembling the neurons of rat dorsal root ganglia. The localization of acid phosphatase (EC 3.1.3.2) activity in the large neurons of dorsal root ganglia in these mice is also similar to that in rats; it is not demonstrable in Golgi elements but is present in GERL and in three types of lysosomes apparently derived from GERL. However, the small neurons of the mouse differ from those of the rat in showing acid phosphatase activity in all elements of the Golgi apparatus. In the mouse neurons the acid phosphatase activity of residual bodies is "latent," i.e., it is not demonstrable in well-preserved cells.  (+info)

A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. (51/1435)

Vacuolar-type H(+)-translocating pyrophosphatases (V-PPases) have been considered to be restricted to plants, a few species of phototrophic proteobacteria and protists. Here, we describe PVP, a thermostable, sequence-divergent V-PPase from the facultatively aerobic hyperthermophilic archaeon Pyrobaculum aerophilum. PVP shares only 38% sequence identity with both the prototypical V-PPase from Arabidopsis thaliana and the H(+)-PPi synthase from Rhodospirillum rubrum, yet possesses most of the structural features characteristic of V-PPases. Heterologous expression of PVP in Saccharomyces cerevisiae yields a M(r) 64 inverted question mark omitted inverted question mark000 membrane polypeptide that specifically catalyzes Mg(2+)-dependent PPi hydrolysis. The existence of PVP implies that PPi-energized H(+)-translocation is phylogenetically more deeply rooted than previously thought.  (+info)

Cloning, expression and characterization of YSA1H, a human adenosine 5'-diphosphosugar pyrophosphatase possessing a MutT motif. (52/1435)

The human homologue of the Saccharomyces cerevisiae YSA1 protein, YSA1H, has been expressed as a thioredoxin fusion protein in Escherichia coli. It is an ADP-sugar pyrophosphatase with similar activities towards ADP-ribose and ADP-mannose. Its activities with ADP-glucose and diadenosine diphosphate were 56% and 20% of that with ADP-ribose respectively, whereas its activity towards other nucleoside 5'-diphosphosugars was typically 2-10%. cADP-ribose was not a substrate. The products of ADP-ribose hydrolysis were AMP and ribose 5-phosphate. K(m) and k(cat) values with ADP-ribose were 60 microM and 5.5 s(-1) respectively. The optimal activity was at alkaline pH (7.4-9.0) with 2.5-5 mM Mg(2+) or 100-250 microM Mn(2+) ions; fluoride was inhibitory, with an IC(50) of 20 microM. The YSA1H gene, which maps to 10p13-p14, is widely expressed in all human tissues examined, giving a 1.4 kb transcript. The 41.6 kDa fusion protein behaved as an 85 kDa dimer on gel filtration. After cleavage with enterokinase, the 24.4 kDa native protein fragment ran on SDS/PAGE with an apparent molecular mass of 33 kDa. Immunoblot analysis with a polyclonal antibody raised against the recombinant YSA1H revealed the presence of a protein of apparent molecular mass 33 kDa in various human cells, including erythrocytes. The sequence of YSA1H contains a MutT sequence signature motif. A major proposed function of the MutT motif proteins is to eliminate toxic nucleotide metabolites from the cell. Hence the function of YSA1H might be to remove free ADP-ribose arising from NAD(+) and protein-bound poly- and mono-(ADP-ribose) turnover to prevent the occurrence of non-enzymic protein glycation.  (+info)

Reciprocal effects of substitutions at the subunit interfaces in hexameric pyrophosphatase of Escherichia coli. Dimeric and monomeric forms of the enzyme. (53/1435)

A homohexameric molecule of Escherichia coli pyrophosphatase is arranged as a dimer of trimers, with an active site present in each of its six monomers. Earlier we reported that substitution of His(136) and His(140) in the intertrimeric subunit interface splits the molecule into active trimers (Velichko, I. S., Mikalahti, K., Kasho, V. N., Dudarenkov, V. Y., Hyytia, T., Goldman, A., Cooperman, B. S., Lahti, R., and Baykov, A. A. (1998) Biochemistry 37, 734-740). Here we demonstrate that additional substitutions of Tyr(77) and Gln(80) in the intratrimeric interface give rise to moderately active dimers or virtually inactive monomers, depending on pH, temperature, and Mg(2+) concentration. Successive dissociation of the hexamer into trimers, dimers, and monomers progressively decreases the catalytic efficiency (by 10(6)-fold in total), and conversion of a trimer into dimer decreases the affinity of one of the essential Mg(2+)-binding sites/monomer. Disruptive substitutions predominantly in the intratrimeric interface stabilize the intertrimeric interface and vice versa, suggesting that the optimal intratrimeric interaction is not compatible with the optimal intertrimeric interaction. Because of the resulting "conformational strain," hexameric wild-type structure appears to be preformed to bind substrate. A hexameric triple variant substituted at Tyr(77), Gln(80), and His(136) exhibits positive cooperativity in catalysis, consistent with this model.  (+info)

Casein kinase I-dependent phosphorylation and stability of the yeast multidrug transporter Pdr5p. (54/1435)

The pleiotropic drug resistance protein, Pdr5p, is an ATP-binding cassette transporter of the plasma membrane of Saccharomyces cerevisiae. Overexpression of Pdr5p results in increased cell resistance to a variety of cytotoxic compounds, a phenotype reminiscent of the multiple drug resistance seen in tumor cells. Pdr5p and two other yeast ATP-binding cassette transporters, Snq2p and Yor1p, were found to be phosphorylated on serine residues in vitro. Mutations in the plasma membrane-bound casein kinase I isoforms, Yck1p and Yck2p, abolished Pdr5p phosphorylation and modified the multiple drug resistance profile. We showed Pdr5p to be ubiquitylated when overexpressed. However, instability of Pdr5p was only seen in Yck1p- and Yck2p-deficient strains, in which it was degraded in the vacuole via a Pep4p-dependent mechanism. Our results suggest that casein kinase I activity is required for membrane trafficking of Pdr5p to the cell surface. In the absence of functional Yck1p and Yck2p, Pdr5p is transported to the vacuole for degradation.  (+info)

Functional significance of the conserved residues for the 23-residue module among MTH1 and MutT family proteins. (55/1435)

Human MTH1 and Escherichia coli MutT proteins hydrolyze 7, 8-dihydro-8-oxo-dGTP (8-oxo-dGTP) to monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine into nascent DNA. Although only 30 amino acid residues (23%) are identical between MTH1 and MutT, there is a highly conserved region consisting of 23 residues (MTH1, Gly(36)-Gly(58)) with 14 identical residues. A chimeric protein MTH1-Ec, in which the 23-residue sequence of MTH1 was replaced with that of MutT, retains its capability to hydrolyze 8-oxo-dGTP, thereby indicating that the 23-residue sequences of MTH1 and MutT are functionally and structurally equivalent and constitute functional modules. By saturation mutagenesis of the module in MTH1, 14 of the 23 residues proved to be essential to exert 8-oxo-dGTPase activity. For the other 9 residues (40, 42, 44, 46, 47, 49, 50, 54, and 58), positive mutants were obtained, and Arg(50) can be replaced with hydrophobic residues (Val, Leu, or Ile), with a greater stability and higher specific activity of the enzyme. Indispensabilities of Val(39), Ile(45), and Leu(53) indicate that an amphipathic property of alpha-helix I consisting of 14 residues of the module (Thr(44)-Gly(58)) is essential to maintain the stable catalytic surface for 8-oxo-dGTPase.  (+info)

Membrane glycoprotein PC-1 inhibition of insulin receptor function occurs via direct interaction with the receptor alpha-subunit. (56/1435)

Plasma cell membrane glycoprotein-1 (PC-1) inhibits insulin receptor (IR) tyrosine kinase activity and subsequent cellular signaling. PC-1 content is elevated in fibroblasts, muscle, and adipose tissue from insulin-resistant subjects, and its elevation correlates with in vivo insulin resistance. In vitro, when PC-1 is transfected and overexpressed in cultured cells, it inhibits IR tyrosine kinase activity. To determine the mechanism whereby PC-1 regulates the IR, we studied how PC-1 interacts with this protein. Overexpression of PC-1 in MCF-7 cells inhibited tyrosine kinase activity of the IR, but not of the IGF-I receptor. When the IR was immunocaptured by specific IR monoclonal antibodies, PC-1 was associated with this receptor. In contrast, after specific immunocapture, PC-1 was not associated with the IGF-I receptor. We next studied HTC cells that were overexpressing an IR alpha-subunit mutant. This IR mutant binds insulin but has a deletion in the tyrosine kinase regulatory domain located in amino acids 485-599. In contrast to normal IRs, PC-1 did not associate with this mutant and did not affect tyrosine kinase activity. To determine whether decreasing PC-1 expression would reverse the inhibition of tyrosine kinase activity, we treated MCF-7 cells overexpressing PC-1 with a monoclonal antibody to PC-1. This treatment decreased PC-1 levels; concomitantly, IR tyrosine kinase activity increased. In contrast, IGF-I receptor tyrosine kinase activity was not increased. These studies indicate, therefore, that PC-1 may inhibit the IR by interacting directly with a specific region in the IR alpha-subunit. These studies also raise the possibility that monoclonal antibodies to PC-1 could be a new treatment for insulin resistance.  (+info)