In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. (57/8131)

Amphotericin B therapy continues to be the "gold standard" in the treatment of invasive aspergillosis in the immunocompromised host. Although Aspergillus fumigatus and Aspergillus flavus constitute the major species, several reports have described invasive pulmonary or disseminated disease due to the less common Aspergillus terreus and dismal clinical outcomes with high-dose amphotericin B. We therefore evaluated 101 clinical isolates of A. terreus for their susceptibility to amphotericin B and the investigational triazole voriconazole by using the National Committee for Clinical Laboratory Standards M27-A method modified for mould testing. Forty-eight-hour MICs indicated 98 and 0% resistance to amphotericin B and voriconazole, respectively. We conclude that A. terreus should be added to the list of etiologic agents refractory to conventional amphotericin B therapy and suggest the potential clinical utility of voriconazole in aspergillosis due to this species.  (+info)

Morphological differentiation of oligodendrocytes requires activation of Fyn tyrosine kinase. (58/8131)

In the central nervous system, myelination of axons occurs when oligodendrocyte progenitors undergo terminal differentiation and initiate process formation and axonal ensheathment. Although it is hypothesized that neuron-oligodendrocyte contact initiates this process, the molecular signals are not known. Here we find that Fyn tyrosine kinase activity is upregulated very early during oligodendrocyte progenitor cell differentiation. Concomitant with this increase is the appearance of several tyrosine phosphorylated proteins present only in differentiated cells. The increased tyrosine kinase activity is specific to Fyn, as other Src family members are not active in oligodendrocytes. To investigate the function of Fyn activation on differentiation, we used Src family tyrosine kinase inhibitors, PP1 and PP2, in cultures of differentiating oligodendrocyte progenitors. Treatment of progenitors with these compounds prevented activation of Fyn and reduced process extension and myelin membrane formation. This inhibition was reversible and not observed with related inactive analogues. A similar effect was observed when a dominant negative Fyn was introduced in progenitor cells. These findings strongly suggest that activation of Fyn is an essential signaling component for the morphological differentiation of oligodendrocytes.  (+info)

Stimulation of the renin-angiotensin system by endothelin subtype A receptor blockade in conscious dogs. (59/8131)

Previous studies in dogs have shown additive or even synergistic effects of combined angiotensin-converting enzyme inhibition and either nonselective endothelin subtype A/B (ETA/B) or selective endothelin subtype A (ETA) receptor blockade on renal vascular resistance and mean arterial blood pressure. A possible mechanism underlying this interaction may be a stimulation of the renin-angiotensin system during endothelin (ET) receptor blockade. We therefore investigated whether plasma renin activity and renin release are regulated by the ETA receptor. Experiments were made in conscious, chronically instrumented dogs receiving either saline or the selective ETA receptor antagonist LU 135252 (10 mg/kg IV). Eighty to 100 minutes after the administration of LU 135252 (n=5), heart rate (99+/-7 versus 81+/-6 bpm; P<0.05) and renal blood flow (327+/-40 versus 278+/-36 mL/min; P<0.05) were increased significantly, whereas mean arterial blood pressure tended to be lower (93+/-5 versus 105+/-7 mm Hg). These changes were associated with a 2-fold increase in plasma renin activity (0.74+/-0.12 versus 0.37+/-0.10 ng angiotensin I per milliliter per hour; P<0.05). Measurements of renin release at various renal perfusion pressures (n=5) with the use of a vascular occluder implanted around the left renal artery revealed that ETA receptor blockade did not alter renin release at resting renal perfusion pressure (78+/-25 versus 71+/-39 U/min) but strongly enhanced the sensitivity of pressure-dependent renin release <80 mm Hg approximately 2.2-fold. In conclusion, selective ETA receptor blockade is associated with a stimulation of the circulating renin-angiotensin system, which results from both a sensitization of pressure-dependent renin release and a larger proportion of blood pressure values falling into the low pressure range, where renin release is stimulated. These find-ings strengthen the view that ET and the renin-angiotensin system closely interact to regulate vascular resistance and provide a physiological basis for synergistic hypotensive effects of a combined blockade of both pressor systems.  (+info)

Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. (60/8131)

Methylglyoxal (MG), an endogenous metabolite that increases in diabetes and is a common intermediate in the Maillard reaction (glycation), reacts with proteins and forms advanced glycation end products. In the present study, we identify a novel MG-arginine adduct and also characterize the structure of a major fluorescent adduct. In addition, we describe the immunochemical study on the MG-arginine adducts using monoclonal antibody directed to MG-modified protein. Upon incubation of Nalpha-acetyl-L-arginine with MG at 37 degrees C, two nonfluorescent products and one fluorescent product were detected as the major products. The nonfluorescent products were identified as the Ndelta-(5-hydro-5-methyl-4-imidazolon-2-yl)-L-ornithine derivatives (5-hydro-5-methylimidazolone) and a novel MG-arginine adduct having a tetrahydropyrimidine moiety (Ndelta-(4-carboxy-4,6-dimethyl-5, 6-dihydroxy-1,4,5,6-tetrahydropyrimidine-2-yl)-L-ornithine). On the basis of the following chemical and spectroscopic evidence, the major fluorescent product, putatively identified as Ndelta-(5-methylimidazolon-2-yl)-L-ornithine (5-methylimidazolone), was found to be identical to Ndelta-(5-hydroxy-4, 6-dimethylpyrimidine-2-yl)-L-ornithine (argpyrimidine): (i) the low and high resolution fast atom bombardment-mass spectrometry gave a molecular ion peak at m/z of 297 (M+H) and a molecular formula of C10H25O6N4, respectively, which coincided with argpyrimidine; (ii) the 1H NMR spectrum of this product in d6-Me2SO showed a singlet at 2.10 ppm corresponding to six protons; (iii) the peak corresponding to the 5-methylimidazolone derivative was not detected by the liquid chromatography-mass spectrometry with the mode of selected ion monitoring; (iv) incubation of 5-hydro-5-methylimidazolone, a putative precursor of 5-methylimidazolone, at 37 degrees C for 14 days scarcely generated 5-methylimidazolone. On the other hand, as an immunochemical approach to the detection of these MG adducts, we raised the monoclonal antibodies (mAb3C and mAb6B) directed to the MG-modified protein and found that they specifically recognized the major fluorescent product, argpyrimidine, as the dominant epitope. The immunohistochemical analysis of the kidneys from diabetic patients revealed the localization of argpyrimidine in intima and media of small artery walls. Furthermore, the accumulation of argpyrimidine was also observed in some arterial walls of the rat brain after middle cerebral artery occlusion followed by reperfusion. These results suggest that argpyrimidine may contribute to the progression of not only long term diabetic complications, such as nephropathy and atherosclerosis, but also the tissue injury caused by ischemia/reperfusion.  (+info)

Assembly of the alpha-globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3' untranslated region determinant and poly(C) binding protein alphaCP. (61/8131)

Globin mRNAs accumulate to 95% of total cellular mRNA during terminal erythroid differentiation, reflecting their extraordinary stability. The stability of human alpha-globin mRNA is paralleled by formation of a sequence-specific RNA-protein (RNP) complex at a pyrimidine-rich site within its 3' untranslated region (3'UTR), the alpha-complex. The proteins of the alpha-complex are widely expressed. The alpha-complex or a closely related complex also assembles at pyrimidine-rich 3'UTR segments of other stable mRNAs. These data suggest that the alpha-complex may constitute a general determinant of mRNA stability. One or more alphaCPs, members of a family of hnRNP K-homology domain poly(C) binding proteins, are essential constituents of the alpha-complex. The ability of alphaCPs to homodimerize and their reported association with additional RNA binding proteins such as AU-rich binding factor 1 (AUF1) and hnRNP K have suggested that the alpha-complex is a multisubunit structure. In the present study, we have addressed the composition of the alpha-complex. An RNA titration recruitment assay revealed that alphaCPs were quantitatively incorporated into the alpha-complex in the absence of associated AUF1 and hnRNP K. A high-affinity direct interaction between each of the three major alphaCP isoforms and the alpha-globin 3'UTR was detected, suggesting that each of these proteins might be sufficient for alpha-complex assembly. This sufficiency was further supported by the sequence-specific binding of recombinant alphaCPs to a spectrum of RNA targets. Finally, density sedimentation analysis demonstrated that the alpha-complex could accommodate only a single alphaCP. These data established that a single alphaCP molecule binds directly to the alpha-globin 3'UTR, resulting in a simple binary structure for the alpha-complex.  (+info)

Spermine inhibition of the 2,5-diaziridinyl-1,4-benzoquinone (DZQ) crosslinking reaction with DNA duplexes containing poly(purine). poly(pyrimidine) tracts. (62/8131)

Upon reduction, 2,5-diaziridinyl-1,4-benzoquinone (DZQ) can form an interstrand guanine to guanine crosslink with DNA duplexes containing a d(GC).d(GC) dinucleotide step. The reaction is enhanced by a thymine positioned 5[prime] to each guanine [i.e. in a d(TGCA). d(TGCA) duplex fragment]. Here we show that spermine can inhibit DZQ crosslink formation in duplexes of sequence d[C(N6)TGCA(M6)C]. d[G(M[prime]6)TG-CA(N[prime]6)G]. For N6= M6= GGGGGG, N6= M6= a 'random' sequence and N6= GGGGGG and M6= a 'random' sequence, spermine concentrations of 20, 1 and 3 microM, respectively, were required for 50% inhibition of the DZQ crosslink. This suggests that spermine is more strongly bound to the polyguanosine tract than the random sequence, making it less available for crosslink inhibition. When the polyguanosine tract is interrupted by N 7-deazaguanine (D) located three bases, d(CGGGDGGTGCAGGDGGGC), and four bases, d(CG-GDGGGTGCAGGGDGGC), from the d(TGCA).d(TGCA) site, 30 and 3 microM spermine, respectively, were required for 50% crosslink inhibition. We suggest that this difference is due to the relative proximity of the three-guanosine tract to the d(TGCA).d(TGCA) site. We were able to confirm these conclusions with further experiments using duplexes containing three-guanosine and two-guanosine tracts and from computer simulations of the spermine-DNA complexes.  (+info)

PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. (63/8131)

BACKGROUND: Adhesion molecule expression on the endothelial cell (EC) surface is critical for leukocyte recruitment to atherosclerotic lesions. Better understanding of transcriptional regulation of adhesion molecules in ECs may provide important insight into plaque formation. Peroxisome proliferator-activated receptor-alpha (PPARalpha), a member of the nuclear receptor family, regulates gene expression in response to certain fatty acids and fibric acid derivatives. The present study investigated PPARalpha expression in human ECs and their regulation of vascular cell adhesion molecule-1 (VCAM-1). METHODS AND RESULTS: Immunohistochemistry revealed that human carotid artery ECs express PPARalpha. Pretreatment of cultured human ECs with the PPARalpha activators fenofibrate or WY14643 inhibited TNF-alpha-induced VCAM-1 in a time- and concentration-dependent manner, an effect not seen with PPARgamma activators. Both PPARalpha activators decreased cytokine-induced VCAM-1 mRNA expression without altering its mRNA half-life. Transient transfection of deletional VCAM-1 promoter constructs and electrophoretic mobility shift assays suggest that fenofibrate inhibits VCAM-1 transcription in part by inhibiting NF-kappaB. Finally, PPARalpha activators significantly reduced adhesion of U937 cells to cultured human ECs. CONCLUSIONS: Human ECs express PPARalpha, a potentially important regulator of atherogenesis through its transcriptional control of VCAM-1 gene expression. Such findings also have implications regarding the clinical use of lipid-lowering agents, like fibric acids, which can activate PPARalpha.  (+info)

Effect of peroxisome proliferator-activated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia. (64/8131)

Inflammatory mediators orchestrate the host immune and metabolic response to acute bacterial infections and mediate the events leading to septic shock. Tumor necrosis factor (TNF) has long been identified as one of the proximal mediators of endotoxin action. Recent studies have implicated peroxisome proliferator-activated receptor alpha (PPARalpha) as a potential target to modulate regulation of the immune response. Since PPARalpha activators, which are hypolipidemic drugs, are being prescribed for a significant population of older patients, it is important to determine the impact of these drugs on the host response to acute inflammation. Therefore, we examined the role of PPARalpha activators on the regulation of TNF expression in a mouse model of endotoxemia. CD-1 mice treated with dietary fenofibrate or Wy-14,643 had fivefold-higher lipopolysaccharide (LPS)-induced TNF plasma levels than LPS-treated control-fed animals. Higher LPS-induced TNF levels in drug-fed animals were reflected physiologically in significantly lower glucose levels in plasma and a significantly lower 50% lethal dose than those in LPS-treated control-fed animals. Utilizing PPARalpha wild-type (WT) and knockout (KO) mice, we showed that the effect of fenofibrate on LPS-induced TNF expression was indeed mediated by PPARalpha. PPARalpha WT mice fed fenofibrate also had a fivefold increase in LPS-induced TNF levels in plasma compared to control-fed animals. However, LPS-induced TNF levels were significantly decreased and glucose levels in plasma were significantly increased in PPARalpha KO mice fed fenofibrate compared to those in control-fed animals. Data from peritoneal macrophage studies indicate that Wy-14,643 modestly decreased TNF expression in vitro. Similarly, overexpression of PPARalpha in 293T cells decreased activity of a human TNF promoter-luciferase construct. The results from these studies suggest that any anti-inflammatory activity of PPARalpha in vivo can be masked by other systemic effects of PPARalpha activators.  (+info)