Semiautomated preparation of 3,5,6-trichloro-2-pyridinol in human urine using a Zymate XP laboratory robot with quantitative determination by gas chromatography-negative-ion chemical ionization mass spectrometry. (1/814)

A rapid and sensitive semiautomated method was developed for quantitation of the chlorpyrifos metabolite 3,5,6-trichloro-2-pyridinol (TCP) in human urine. A Zymark Zymate XP laboratory robotics system was used to mix urine samples, transfer aliquots, add the stable-isotope-labeled TCP internal standard (13C2- or 13C2,15N-), and liberate conjugates of TCP from urine via acid hydrolysis. Samples were manually extracted into toluene, derivatized, and analyzed by gas chromatography-negative-ion chemical ionization mass spectrometry. Determination of the metabolic TCP was performed by selected ion monitoring of the dichloropyridinol fragment ions: m/z 161 for TCP and m/z 165 for 13C2-TCP or m/z 168 for 13C2,15N-TCP. Interday precision and accuracy were demonstrated over 3 years of analyses using the 13C2-TCP internal standard, with an average recovery from fortified urine samples of 93+/-12% (N = 54, concentration range 1-140 ng/mL). The method was found to be linear over the range of 0.5 to 200 ng/mL, and the limit of detection for TCP in urine was estimated to be 0.2 ng/mL with a limit of quantitation of 1 ng/mL. The effect of solids distribution on the concentration of TCP in the thawed urine samples was examined, and the results indicated that homogeneous distribution is critical for quantitation. The precision and accuracy of the automated method with respect to the transfer of homgeneous urine aliquots and delivery of internal standard yielded equivalent or improved results over the manual techniques. Overall, this method is more simple than existing methodologies, and it yields results with improved precision, accuracy, and sensitivity over previously developed methods.  (+info)

Effects of phosphodiesterase inhibitors after coronary artery bypass grafting. (2/814)

The aim of this study was to estimate the postoperative effects of phosphodiesterase (PDE) inhibitors (milrinone and olprinone) after coronary artery bypass grafting (CABG). To prevent hypotension caused by the PDE inhibitors, low dose of catecholamines were used concomitantly. A total of 34 elective CABG cases were tested. In 12 cases, 0.25 microg kg(-1) min(-1) of milrinone, 3 microg kg(-1) min(-1) of dobutamine (DOB) and dopamine (DOA) were used concomitantly (Group-M). In another 10 patients, 0.1 microg kg(-1) min(-1) of olprinone and the same doses of the catecholamines were infused (Group-O). As a control, the same doses of DOA and DOB only were administered in 12 patients (Group-C). When the pump flow of the cardiopulmonary bypass (CPB) decreased to half, these drugs were given in all groups. Hemodynamics were recorded before CPB, just after the operation, and 3, 6, 12, 24, 48 and 72 h after the operation. Both milrinone and olprinone increased the cardiac index and decreased systemic vascular resistance to almost the same degree. Olprinone decreased mean aortic and pulmonary artery pressures, and also significantly reduced the preload of both right and left heart compared with milrinone. Significant hypotension was not detected due to the concomitant usage of low-dose catecholamines. This concomitant usage of PDE inhibitors and catecholamines allowed easy weaning from CPB, demonstrating excellent hemodynamics after CABG. Good oxygen demand and supply balance were maintained in peripheral tissue. These results suggest that these new PDE inhibitors may be effective not only for weaning from CPB but also for post-cardiotomy cardiogenic shock.  (+info)

Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. (3/814)

A time course study was carried out to elucidate the mechanisms for antifibrotic effect of pirfenidone (PD). Hamsters were intratracheally (i.t.) instilled with saline (SA) or bleomycin (BL) (7.5 units/kg/5 ml). The animals were fed a diet containing 0.5% PD or the same control diet (CD) without the drug 2 days before and throughout the study. The animals were sacrificed at various times after instillation. The lung hydroxyproline level in BL + CD groups was gradually increased and peaked at 21 days to 181% of the SA + CD control. The BL + PD-treated groups showed a gradual decrease in their lung collagen content, showing a maximum reduction of 40% at day 21. The lung malondialdehyde levels of the BL + CD groups were increased by several-fold of the corresponding SA + CD groups at various times. The lung prolyl hydroxylase (PH) activities in the BL + CD groups were also increased by several-fold of the corresponding SA + CD groups at these time points. The hamsters in the BL + PD showed a gradual decrease in the lung malondialdehyde levels from 10 to 21days compared with their corresponding BL + CD groups. Treatment with PD also reduced the lung PH activities in the BL + PD groups compared with the corresponding BL + CD groups. However, PD failed to manifest any direct inhibitory effect on PH activity in vitro. BL treatment increased the lung procollagen I and III gene expressions in the BL + CD groups by several-fold at varying times compared with the corresponding SA + CD, and treatment with PD in the BL + PD groups significantly down-regulated the BL-induced overexpression of these genes. Studies evaluating the regulation of these genes at the transcriptional level revealed PD significantly reduced the transcription of PC I at 14 days. Our results indicate that the antifibrotic effect of PD was partly due to suppression of the BL-induced inflammatory events and partly due to down-regulation of BL-induced overexpression of lung procollagen I and III genes.  (+info)

Antithrombotic efficacy of thrombin inhibitor L-374,087: intravenous activity in a primate model of venous thrombus extension and oral activity in a canine model of primary venous and coronary artery thrombosis. (4/814)

The small molecule direct thrombin inhibitor L-374,087 was characterized across species in an in vitro activated partial thromboplastin clotting time (aPTT) assay and in vivo in rhesus monkey and dog thrombosis models. In vitro in rhesus, dog, and human plasma, L-374,087 concentrations eliciting 2-fold increases in aPTT were 0.25, 1.9, and 0.28 microM, respectively. In anesthetized rhesus monkeys, 300 microgram/kg bolus plus 12 microgram/kg/min and 300 microgram/kg bolus plus 30 microgram/kg/min L-374,087 i.v. infusions significantly reduced jugular vein thrombus extension, with both regimens limiting venous thrombus extension to 2-fold that of baseline thrombus mass compared with a 5-fold extension observed in the vehicle control group. Antithrombotic efficacy in the rhesus with the lower-dose regimen was achieved with 2.3- to 2.4-fold increases in aPTT and prothrombin time. In a conscious instrumented dog model of electrolytic vessel injury, the oral administration of two 10 mg/kg L-374,087 doses 12 h apart significantly reduced jugular vein thrombus mass, reduced the incidence of and delayed time to occlusive coronary artery thrombosis, and significantly reduced coronary artery thrombus mass and ensuing posterolateral myocardial infarct size. Antithrombotic efficacy in the dog was achieved with 1.6- to 2.0-fold increases in aPTT at 1 to 6 h after oral dosing with L-374,087. These results indicate significant antithrombotic efficacy against both venous and coronary arterial thrombosis with L-374,087 with only moderate elevations in aPTT or prothrombin time. The oral efficacy of L-374,087 characterizes this compound as a prototype for the further development of orally active direct thrombin inhibitors.  (+info)

Functional-structural analysis of threonine 25, a residue coordinating the nucleotide-bound magnesium in elongation factor Tu. (5/814)

Elongation factor (EF) Tu Thr-25 is a key residue binding the essential magnesium complexed to nucleotide. We have characterized mutations at this position to the related Ser and to Ala, which abolishes the bond to Mg2+, and a double mutation, H22Y/T25S. Nucleotide interaction was moderately destabilized in EF-Tu(T25S) but strongly in EF-Tu(T25A) and EF-Tu(H22Y/T25S). Binding Phe-tRNAPhe to poly(U).ribosome needed a higher magnesium concentration for the latter two mutants but was comparable at 10 mM MgCl2. Whereas EF-Tu(T25S) synthesized poly(Phe), as effectively as wild type, the rate was reduced to 50% for EF-Tu(H22Y/T25S) and was, surprisingly, still 10% for EF-Tu(T25A). In contrast, protection of Phe-tRNAPhe against spontaneous hydrolysis by the latter two mutants was very low. The intrinsic GTPase in EF-Tu(H22Y/T25S) and (T25A) was reduced, and the different responses to ribosomes and kirromycin suggest that stimulation by these two agents follows different mechanisms. Of the mutants, only EF-Tu(T25A) forms a more stable complex with EF-Ts than wild type. This implies that stabilization of the EF-Tu.EF-Ts complex is related to the inability to bind Mg2+, rather than to a decreased nucleotide affinity. These results are discussed in the light of the three-dimensional structure. They emphasize the importance of the Thr-25-Mg2+ bond, although its absence is compatible with protein synthesis and thus with an active overall conformation of EF-Tu.  (+info)

DNA cleavage activities of Staphylococcus aureus gyrase and topoisomerase IV stimulated by quinolones and 2-pyridones. (6/814)

We have cloned Staphylococcus aureus DNA gyrase and topoisomerase IV and expressed them in Escherichia coli as polyhistidine-tagged proteins to facilitate purification and eliminate contamination by host enzymes. The enzyme preparations had specific activities similar to previously reported values. Potassium glutamate (K-Glu) stimulated the drug-induced DNA cleavage activity and was optimal between 100 and 200 mM for gyrase and peaked at 100 mM for topoisomerase IV. Higher concentrations of K-Glu inhibited the cleavage activities of both enzymes. Using a common buffer system containing 100 mM K-Glu, we tested the enzyme-mediated DNA cleavage activities of both gyrase and topoisomerase IV with oxolinic acid, norfloxacin, ciprofloxacin, trovafloxacin, clinafloxacin, and the 2-pyridone ABT-719. As expected, all drugs tested demonstrated greater potency against topoisomerase IV than against gyrase. In addition, cleavage activity was found to correlate well with antibacterial activity.  (+info)

Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. (7/814)

This study was undertaken to investigate whether treatment with the antifibrotic drug pirfenidone (PD) down-regulates the bleomycin (BL)-induced overexpression of transforming growth factor (TGF)-beta gene in the lungs. Hamsters were intratracheally instilled with SA or BL (6.5 U/kg/4 ml) under anesthesia. They were fed a diet containing 0.5% PD or the same control diet (CD) without the drug 2 days before and throughout the study. After the animals were sacrificed, their lungs were appropriately processed. The BL treatment elevated the total influx of inflammatory cells, including macrophages, by severalfold at different days in bronchoalveolar lavage fluid (BALF) from hamsters in BL + CD groups, relative to the corresponding SA + CD control groups. Treatment with PD significantly (P +info)

Inhibition of Src kinases by a selective tyrosine kinase inhibitor causes mitotic arrest. (8/814)

src kinase activity is elevated in some human tumors, including breast and colon cancers. The precise cellular function of the src family kinases is not clearly understood, but they appear to be involved in numerous signaling pathways. We studied the effects of PD173955, a novel src family-selective tyrosine kinase inhibitor, on cancer cell lines and found that it has significant antiproliferative activity due to a potent arrest of mitotic progression. The mitotic block occurs after chromosome condensation in prophase, before spindle assembly and without loss of cyclin A and B kinase activities. This effect is seen in cancer cell lines of all types with low or high activities of src kinases as well as in untransformed cell lines. In MDA-MB-468 breast cancer cells, this drug produces a rapid inhibition of cellular src and yes kinase activities as well as suppression of the mitotic hyperactivity of these kinases. This compound defines a novel class of antimitotic drugs that work through inhibition of src kinases and possibly other protein kinases that are required for progression through the initial phases of mitosis.  (+info)