(1/8964) Transformation mediated by RhoA requires activity of ROCK kinases.

BACKGROUND: The Ras-related GTPase RhoA controls signalling processes required for cytoskeletal reorganisation, transcriptional regulation, and transformation. The ability of RhoA mutants to transform cells correlates not with transcription but with their ability to bind ROCK-I, an effector kinase involved in cytoskeletal reorganisation. We used a recently developed specific ROCK inhibitor, Y-27632, and ROCK truncation mutants to investigate the role of ROCK kinases in transcriptional activation and transformation. RESULTS: In NIH3T3 cells, Y-27632 did not prevent the activation of serum response factor, transcription of c-fos or cell cycle re-entry following serum stimulation. Repeated treatment of NIH3T3 cells with Y-27632, however, substantially disrupted their actin fibre network but did not affect their growth rate. Y-27632 blocked focus formation by RhoA and its guanine-nucleotide exchange factors Dbl and mNET1. It did not affect the growth rate of cells transformed by Dbl and mNET1, but restored normal growth control at confluence and prevented their growth in soft agar. Y-27632 also significantly inhibited focus formation by Ras, but had no effect on the establishment or maintenance of transformation by Src. Furthermore, it significantly inhibited anchorage-independent growth of two out of four colorectal tumour cell lines. Consistent with these data, a truncated ROCK derivative exhibited weak ability to cooperate with activated Raf in focus formation assays. CONCLUSIONS: ROCK signalling is required for both the establishment and maintenance of transformation by constitutive activation of RhoA, and contributes to the Ras-transformed phenotype. These observations provide a potential explanation for the requirement for Rho in Ras-mediated transformation. Moreover, the inhibition of ROCK kinases may be of therapeutic use.  (+info)

(2/8964) Regulation and function of family 1 and family 2 UDP-glucuronosyltransferase genes (UGT1A, UGT2B) in human oesophagus.

Human UDP-glucuronosyltransferases (UGTs) are expressed in a tissue-specific fashion in hepatic and extrahepatic tissues [Strassburg, Manns and Tukey (1998) J. Biol. Chem. 273, 8719-8726]. Previous work suggests that these enzymes play a protective role in chemical carcinogenesis [Strassburg, Manns and Tukey (1997) Cancer Res. 57, 2979-2985]. In this study, UGT1 and UGT2 gene expression was investigated in human oesophageal epithelium and squamous-cell carcinoma in addition to the characterization of individual UGT isoforms using recombinant protein. UGT mRNA expression was characterized by duplex reverse transcriptase-PCR analysis and revealed the expression of UGT1A7, UGT1A8, UGT1A9 and UGT1A10 mRNAs. UGT1A1, UGT1A3, UGT1A4, UGT1A5 and UGT1A6 transcripts were not detected. UGT2 expression included UGT2B7, UGT2B10 and UGT2B15, but UGT2B4 mRNA was absent. UGT2 mRNA was present at significantly lower levels than UGT1 transcripts. This observation was in agreement with the analysis of catalytic activities in oesophageal microsomal protein, which was characterized by high glucuronidation rates for phenolic xenobiotics, all of which are classical UGT1 substrates. Whereas UGT1A9 was not regulated, differential regulation of UGT1A7 and UGT1A10 mRNA was observed between normal oesophageal epithelium and squamous-cell carcinoma. Expression and analysis in vitro of recombinant UGT1A7, UGT1A9, UGT1A10, UGT2B7 and UGT2B15 demonstrated that UGT1A7, UGT1A9 and UGT1A10 catalysed the glucuronidation of 7-hydroxybenzo(alpha)pyrene, as well as other environmental carcinogens, such as 2-hydroxyamino-1-methyl-6-phenylimidazo-(4, 5-beta)-pyridine. Although UGT1A9 was not regulated in the carcinoma tissue, the five-fold reduction in 7-hydroxybenzo(alpha)pyrene glucuronidation could be attributed to regulation of UGT1A7 and UGT1A10. These data elucidate an individual regulation of human UGT1A and UGT2B genes in human oesophagus and provide evidence for specific catalytic activities of individual human UGT isoforms towards environmental carcinogens that have been implicated in cellular carcinogenesis.  (+info)

(3/8964) Insulin-like growth factors I and II are unable to form and maintain their native disulfides under in vivo redox conditions.

Insulin-like growth factor (IGF) I does not quantitatively form its three native disulfide bonds in the presence of 10 mM reduced and 1 mM oxidized glutathione in vitro [Hober, S. et al. (1992) Biochemistry 31, 1749-1756]. In this paper, we show (i) that both IGF-I and IGF-II are unable to form and maintain their native disulfide bonds at redox conditions that are similar to the situation in the secretory vesicles in vivo and (ii) that the presence of protein disulfide isomerase does not overcome this problem. The results indicate that the previously described thermodynamic disulfide exchange folding problem of IGF-I in vitro is also present in vivo. Speculatively, we suggest that the thermodynamic disulfide exchange properties of IGF-I and II are biologically significant for inactivation of the unbound growth factors by disulfide exchange reactions to generate variants destined for rapid clearance.  (+info)

(4/8964) delta-Aminolevulinate synthetases in the liver cytosol fraction and mitochondria of mice treated with allylisopropylacetamide and 3,5-dicarbethoxyl-1,4-dihydrocollidine.

Hepatic delta-aminolevulinate (ALA) synthetase was induced in mice by the administration of allylisopropylacetamide (AIA) and 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC). In both cases, a significant amount of ALA synthetase accumulated in the liver cytosol fraction as well as in the mitochondria. The apparent molecular weight of the cytosol ALA synthetase was estimated to be 320,000 by gel filtration, but when the cytosol ALA synthetase was subjected to sucrose density gradient centrifugation, it showed a molecular weight of 110,000. In the mitochondria, there were two different sizes of ALA synthetase with molecular weights of 150,000 and 110,000, respectively; the larger enzyme was predominant in DDC-treated mice, whereas in AIA-treated mice and normal mice the enzyme existed mostly in the smaller form. When hemin was injected into mice pretreated with DDC, the molecular size of the mitochondrial ALA synthetase changed from 150,000 to 110,000. The half-life of ALA synthetase in the liver cytosol fraction was about 30 min in both the AIA-treated and DDC-treated mice. The half-life of the mitochondrial ALA synthetase in AIA-treated mice and normal mice was about 60 min, but in DDC-treated mice the half-life was as long as 150 min. The data suggest that the cytosol ALA synthetase of mouse liver is a protein complex with properties very similar to those of the cytosol ALA synthetase of rat liver, which has been shown to be composed of the enzyme active protein and two catalytically inactive binding proteins, and that ALA synthetase may be transferred from the liver cytosol fraction to the mitochondria with a size of about 150,000 daltons, followed by its conversion to enzyme with a molecular weight of 110,000 within the mitochondria. The process of intramitochondrial enzyme degradation seems to be affected in DDC-treated animals.  (+info)

(5/8964) Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine1A receptors: A comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635.

The present study characterized the effects of the novel, selective, and potent 5-hydroxytryptamine1A (serotonin) (5-HT1A) receptor agonist, alnespirone [S-20499, (S)-N-4-[5-methoxychroman-3-yl)propylamino)butyl- 8-azaspiro-(4,5)-diacetamide, hydrochloride] on offensive and defensive resident-intruder aggression in wild-type rats and compared its actions with those of the prototypical full 5-HT1A agonist 8-hydroxy-2- dipropylaminotetralin (8-OH-DPAT), the partial 5-HT1A agonists ipsapirone and buspirone, and the mixed 5-HT1A/1B agonist eltoprazine. All five agonists exerted effective dose-dependent decreases of offensive aggressive behavior in resident rats; 8-OH-DPAT was the most potent (ID50 = 0.074 mg/kg), followed by eltoprazine (0.24), buspirone (0.72), ipsapirone (1.08), and alnespirone (1.24). However, in terms of selectivity of the antiaggressive effects as determined by the absence of decrements in social interest and general motor activity, alnespirone appeared to be superior. In the defensive aggression test, neither alnespirone nor any of the other four agonists changed defensive behaviors in the intruder rats. The involvement of 5-HT1A receptors in the antiaggressive actions of these drugs was confirmed by showing that the selective 5-HT1A receptor antagonist WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2- pyridinyl)cyclohexanecarboxamide trihydrochloride), which was inactive alone, fully prevented the antiaggressive effects of alnespirone, 8-OH-DPAT, and buspirone and partly reversed those of ipsapirone and eltoprazine. The data clearly indicate that alnespirone effectively suppresses offensive aggression with an advantageous profile of action compared with other full or partial 5-HT1A agonists. These selective antiaggressive actions of alnespirone are mediated by stimulating 5-HT1A receptors, presumably the somatodendritic autoreceptors at the raphe nuclei. Furthermore, the data provide evidence for a major involvement of these 5-HT1A receptors in the modulation of aggressive behavior by 8-OH-DPAT, ipsapirone, buspirone, and eltoprazine.  (+info)

(6/8964) Development of muscarinic analgesics derived from epibatidine: role of the M4 receptor subtype.

Epibatidine, a neurotoxin isolated from the skin of Epipedobates tricolor, is an efficacious antinociceptive agent with a potency 200 times that of morphine. The toxicity of epibatidine, because of its nonspecificity for both peripheral and central nicotinic receptors, precludes its development as an analgesic. During the synthesis of epibatidine analogs we developed potent antinociceptive agents, typified by CMI-936 and CMI-1145, whose antinociception, unlike that of epibatidine, is mediated via muscarinic receptors. Subsequently, we used specific muscarinic toxins and antagonists to delineate the muscarinic receptor subtype involved in the antinociception evoked by these agents. Thus, the antinociception produced by CMI-936 and CMI-1145 is inhibited substantially by 1) intrathecal injection of the specific muscarinic M4 toxin, muscarinic toxin-3; 2) intrathecally administered pertussis toxin, which inhibits the G proteins coupled to M2 and M4 receptors; and 3) s.c. injection of the M2/M4 muscarinic antagonist himbacine. These results demonstrate that the antinociception elicited by these epibatidine analogs is mediated via muscarinic M4 receptors located in the spinal cord. Compounds that specifically target the M4 receptor therefore may be of substantial value as alternative analgesics to the opiates.  (+info)

(7/8964) The ras oncogene-mediated sensitization of human cells to topoisomerase II inhibitor-induced apoptosis.

BACKGROUND: Among the inhibitors of the enzyme topoisomerase II (an important target for chemotherapeutic drugs) tested in the National Cancer Institute's In Vitro Antineoplastic Drug Screen, NSC 284682 (3'-hydroxydaunorubicin) and NSC 659687 [9-hydroxy-5,6-dimethyl-1-(N-[2(dimethylamino)ethyl]carbamoyl)-6H-pyrido -(4,3-b)carbazole] were the only compounds that were more cytotoxic to tumor cells harboring an activated ras oncogene than to tumor cells bearing wild-type ras alleles. Expression of the multidrug resistance proteins P-glycoprotein and MRP (multidrug resistance-associated protein) facilitates tumor cell resistance to topoisomerase II inhibitors. We investigated whether tumor cells with activated ras oncogenes showed enhanced sensitivity to other topoisomerase II inhibitors in the absence of the multidrug-resistant phenotype. METHODS: We studied 20 topoisomerase II inhibitors and individual cell lines with or without activated ras oncogenes and with varying degrees of multidrug resistance. RESULTS: In the absence of multidrug resistance, human tumor cell lines with activated ras oncogenes were uniformly more sensitive to most topoisomerase II inhibitors than were cell lines containing wild-type ras alleles. The compounds NSC 284682 and NSC 659687 were especially effective irrespective of the multidrug resistant phenotype. The ras oncogene-mediated sensitization to topoisomerase II inhibitors was far more prominent with the non-DNA-intercalating epipodophyllotoxins than with the DNA-intercalating inhibitors. This difference in sensitization appears to be related to a difference in apoptotic sensitivity, since the level of DNA damage generated by etoposide (an epipodophyllotoxin derivative) in immortalized human kidney epithelial cells expressing an activated ras oncogene was similar to that in the parental cells, but apoptosis was enhanced only in the former cells. CONCLUSIONS: Activated ras oncogenes appear to enhance the sensitivity of human tumor cells to topoisomerase II inhibitors by potentiating an apoptotic response. Epipodophyllotoxin-derived topoisomerase II inhibitors should be more effective than the DNA-intercalating inhibitors against tumor cells with activated ras oncogenes.  (+info)

(8/8964) Raf-1 is activated by the p38 mitogen-activated protein kinase inhibitor, SB203580.

SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imi dazole) is widely used as a specific inhibitor of p38 mitogen-activated protein kinase (MAPK). Here, we report that SB203580 activates the serine/threonine kinase Raf-1 in quiescent smooth muscle cells in a dose-dependent fashion. The concentrations of SB203580 required lie above those necessary to inhibit p38 MAPK and we were unable to detect basal levels of active p38 MAPK. SB203580 does not directly activate Raf-1 in vitro, and fails to activate Ras, MEK, and ERK in intact cells. In vitro, however, SB203580-stimulated Raf-1 activates MEK1 in a coupled assay. We conclude that activation of Raf-1 by SB203580 is not mediated by an inhibition of p38 MAPK, is Ras-independent, and is uncoupled from MEK/ERK signaling.  (+info)